MRI of cirrhosis

Dr David Bowden FRCR

Consultant HPB Radiologist Cambridge University Hospitals

ESGAR Workshop: Abdominal MRI from Theory to Applications February 2025

Declarations

None

MRI of Cirrhosis

Technique

"You can't make a silk purse out of a sow's ear"

MR Protocol – c.30 mins

- Coronal T2 single shot (3 mm SSFSE)
- Axial T2W single shot (5 mm SSFSE) +/- fatsat
- Dual echo T1W (IP/OP)
- IDEAL IQ fat & iron quantification
- T1W GRE (LAVA/VIBE etc)
- T1W multiphase + Gd
- DWI b100, b600 + computed/synthetic b1000
- Axial & Coronal T1W delayed
- Lava Star free breathing T1W delayed (c.70s)

Top tip – backup plan for difficult patients

- Coronal T2 single shot (3 mm SSFSE)
- Axial T2W single shot (5 mm SSFSE) +/- fatsat
- Dual echo T1W (IP/OP)
- IDEAL IQ fat & iron quantification
- T1W GRE (LAVA/VIBE etc)
- T1W multiphase + Gd
 - Multiphase arterial/free breathing
 - eg.GRASP (Siemens)/DISCO Star (GE)
- DWI b100, b600 + computed/synthetic b1000
- Axial & Coronal T1W delayed
- Lava Star free breathing T1W delayed (c.70s

CT/MRI Diagnostic Table

Arterial phase hyperenhancement (APHE)		No APHE		Nonrim APHE		
Observation size (mm)		< 20	≥ 20	< 10	10-19	≥ 20
Count additional major features: Enhancing "capsule" Nonperipheral "washout" Threshold growth 	None	LR-3	LR-3	LR-3	LR-3	LR-4
	One	LR-3	LR-4	LR-4	LR-4 LR-5	LR-5
	≥ Two	LR-4	LR-4	LR-4	LR-5	LR-5

DISCO Star T1W + Gd – multiphase free breathing

Top tip – free breathing delayed phase

- Coronal T2 single shot (3 mm SSFSE)
- Axial T2W single shot (5 mm SSFSE) +/- fatsat
- Dual echo T1W (IP/OP)
- IDEAL IQ fat & iron quantification
- T1W GRE (LAVA/VIBE etc)
- T1W multiphase + Gd
 - Multiphase arterial/free breathing
 - eg.GRASP (Siemens)/DISCO Star (GE)
- DWI b100, b600 + computed/synthetic b1000
- Axial & Coronal T1W delayed
- Lava Star (GE) free breathing T1W delayed (c.70s)
 - StarVIBE (Siemens)/4D FB (Philips)

Cartesian k-space

Radial k-space trajectory

- \rightarrow reduced motion artefact
- "Stack of stars"

Top tip – fat/iron quant

- Coronal T2 single shot (3 mm SSFSE)
- Axial T2W single shot (5 mm SSFSE) +/- fatsat
- Dual echo T1W (IP/OP)
- IDEAL IQ fat & iron quantification
- T1W GRE (LAVA/VIBE etc)
- T1W multiphase + Gd

Cambridge University Hospitals

- Multiphase arterial/free breathing
- eg.GRASP (Siemens)/DISCO Star (GE)
- DWI b100, b600 + computed/synthetic b1000
- Axial & Coronal T1W delayed

NHS Foundation Trust

- Fe overload 10-30% of pts with chronic liver dz
- Dual echo unreliable (coexisting steatosis/iron?)

Dual echo OP 2.3 ms

IP 4.6 ms

IDEAL IQ – R2*

DWI b600

Qualitative evaluation

Morphologic changes - limitations

• Often more subtle at MR

Left medial section atroph

Parenchymal changes – fibrosis

- Increased H_2O content within fibrosis \rightarrow increased T1 & T2 relaxation times
- Bands of T2 hyper/T1 hypointensity

Cambridge University Hospitals NHS Foundation Trust

Parenchymal changes – confluent fibrosis

Cambridge University Hospitals

NHS Foundation Trust

- Subtle on CT
- T2 hyperintensity esp fatsat, delayed enhancement
- Capsular retraction
 - Confluent fibrosis vs CCA? Biliary dilatation?

Ancillary features

Cambridge University Hospitals

Quantitative evaluation

How to diagnose fibrosis/cirrhosis?

6C; diffT5.1 0.2 fp; G.7; DR:8; LR 3.1 4.8 SF:

2D shear wave elastography

- 1/2000 liver
 - 6 cm depth

Transient elastography ("Fibroscan")

www.fibroscan.com

- Patient factors: obesity, ascites
- No images for guidance
- Limited sampling

09

FR7

Magnetic Resonance Elastography (MRE)

- Mechanical waves \rightarrow measure shear modulus (shear stiffness) of tissues?
- 1995 Mayo group (Ehman et al)
- FDA approval 2009 (GE), Siemens (2012), Philips (2014)

Muthupillai et al Science 269:1854-1857 (1995)

Elastography – "Palpation with MRI"

- Low elasticity (soft tissues)
- Shorter wavelength
- Lower velocity

- High elasticity (stiff tissues)
- Longer wavelength
- Greater velocity

Commercial MRE system

Passive Driver – acoustic vibration

Active Driver – longitudinal waves

Longitudinal waves (~60 Hz) converted within tissues to shear waves

Example output images

Cambridge University Hospitals NHS Foundation Trust

Results

Mean liver stiffness	Fibrosis stage
< 2.5 kPa	Normal
2.5 to 3.0 kPa	Normal or inflammation
3.0 to 3.5 kPa	Stage 1–2 fibrosis
3.5 to 4.0 kPa	Stage 2–3 fibrosis
4.0 to 5.0 kPa	Stage 3–4 fibrosis
> 5.0 kPa	Stage 4 fibrosis or cirrhosis

Abdom Radiol (NY) . 2022 January ; 47(1): 94-114

Cambridge University Hospitals

NHS Foundation Trust

Weighted mean of 4 slices calculated:

- "Significant" fibrosis = \ge F2
- "Advanced" fibrosis = \ge F3
- Cirrhosis = F4

- Extensive literature: >500 studies
- High +ve and –ve predictive values
- Generally outperforms transient elastography, shear wave US, T1 mapping, DWI, IVIM....¹

Fibrosis Stage	Optimal cut-off (kPa)	AUROC (95% CI)	Sensitivity	Specificity
Any Fibrosis (≥Stage 1)	3.45	0.84 (0.76–0.92)	0.73	0.79
Significant Fibrosis (≥Stage 2)	3.66	0.88 (0.84–0.91)	0.79	0.81
Advanced Fibrosis (≥Stage 3)	4.11	0.93 (0.90–0.95)	0.85	0.85
Cirrhosis (Stage 4)	4.71	0.92 (0.90–0.94)	0.91	0.81

Singh et al. Clin Gastroenterol Hepatol. 2015 Mar;13(3):440-451

1. Yin M, Ehman R. AJR Am J Roentgenol . 2024 January ; 222(1): e2329437

Cambridge University Hospitals

Advantages of MRE

- 1. Very low technical failure rate (c.5%)
- 2. Limited impact of obesity (cf TE/ARFI)
- 3. Minimal impact of ascites
- 4. Superior performance to TE or ARFI
- 5. Common thresholds regardless of aetiology
- 6. No impact from steatosis (cf. TE/ARFI)
- 7. Ability to demonstrate geographic fibrosis
- 8. Cross vendor compatibility (unlike other imaging biomarkers)
- 9. The first MRI biomarker "technically confirmed" by QIBA (2022)

Cambridge University Hospitals

Future directions?

"3D" MRE

3D MRE

	veriede eengeeden (egredialde)					
Shear Stiffness	Storage Modulus	Loss Modulus	Damping Ratio	Volumetric Stra		
C, J						
0 2 4 6 8	0 2 4 6 8	0 1 2	0 0.1 0.2 0.3	0 10e-3 2		

3D MRE = motion encoding all 3 axes: • Conventional MRE = 2D

- Volumetric acquisition \bullet
- Single direction of motion encoding Potential for discriminating:
- Solitary metric: "complex shear modulus (stiffness)"
 Inflammation vs fibrosis

ıın

- Simple but confounders: \bullet
 - Fibrosis vs congestion \mathbf{O}
 - Inflammation
 - Prediction of portal HTN
 - Biliary obstruction, cholestasis
 Currently research only
- - Venous congestion (eq. cardiac)

Magn Reson Imaging Clin N Am . 2020 August ; 28(3): 331-340

T1 mapping

Tissue T1 (msec) Water/CSF 4000 Gray matter 900 Muscle 900 Liver 500 Fat 250 Tendon 400 Proteins 250 Ice 5000

Questions & Answers in MRI. https://mri-q.com/why-is-t1--t2.html#/

• T1 = recovery of longitudinal relaxation (time to 63%)

• Water = long T1

Cambridge University Hospitals

NHS Foundation Trust

- Myocardial fibrosis shown to increase T1
- Role in assessment of liver fibrosis? Without new hardware?

T1 mapping

- T1 shown to increase with liver fibrosis....but why?
- Fibrosis $\rightarrow \uparrow$ Extracellular space \rightarrow H₂0 accumulation
- BUT confounded by:
 - <u>Inflammation</u> (H₂O), protein/matrix deposition (increases T1)
 - Fat (increases T1)
 - Iron (reduces T1)
 - Haematocrit

Cambridge University Hospitals

NHS Foundation Trust

• Blood oxygenation...

Obmann et al. European Radiology (2021) 31:4308-4318

• "Corrected" – cT1 – accounts for iron but not all of above, esp. fat

Gadoxetic acid (Primovist) uptake

 \bullet

Poetter-Lang et al. Abdominal Radiology (2020) 45:3532-3544

Cirrhosis:

- Decreased no. hepatocytes
- Increased fibrosis
 - Reduced enhancement in HPB phase?

0.00

- No need for specialist hardware/software
- AUC of RLE = c 0.83 for cirrhosis

Confounders/Issues

- 1. Inflammation \rightarrow reduced function, oedema
- 2. Cholestasis \rightarrow reduced excretion
- 3. Transporter proteins up/downregulated \rightarrow complex
- 4. Enhancement reflects function not just structural

changes - function not the same in all cirrhotic livers

- 5. Which enhancement ratio to use?
- 6. Vendor, field strength
- 7. Genetic polymorphisms in transporter proteins

Quantitative analysis: Summary

Comparison of Magnetic Resonance Elastography and Gadoxetate Disodium–Enhanced Magnetic Resonance Imaging for the Evaluation of Hepatic Fibrosis

Ye Ra Choi, MD,* Jeong Min Lee, MD,*† Jeong Hee Yoon, MD,* Joon Koo Han, MD,*† and Byung Ihn Choi, MD*†

Invest Radiol 2013;48: 607-613

MRE outperforms ¹:

- US methods (TE/ARFI)
- T1 mapping
- Gadoxetate-enhancement methods
- Other MR methods (DWI, IVIM)
- Serum-based methods

But: hardware costs (c. £60K)

1. Yin M, Ehman RL. AJR. 2024 Jan;222(1):e2329437

Summing up

Getting the basics right

- Image optimization!
- Consider delayed FB sequence & fat/iron quant as routine
- Have a backup protocol for difficult patients

Qualitative evaluation

- Morphologic changes
- Can be subtle
- Ancillary features

Principles & practice of elastography

- Not difficult!
- Performs better than any other quantitative technique

Future directions

- <u>3D MRE</u>
- T1 mapping?
- Gadoxetate/functional imaging?

Please get in touch if any questions/comments!

david.bowden4@nhs.net

Further reading: to follow...

