

MRI of peritoneal diseases

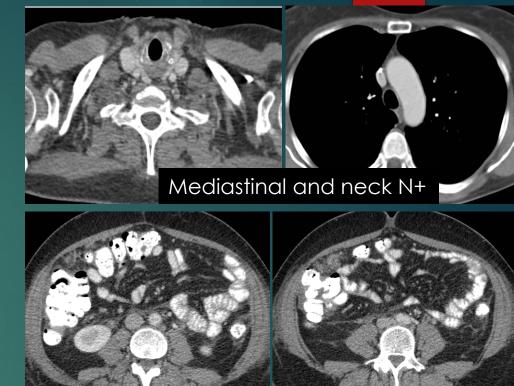
Vincent Vandecaveye,
Department of Radiology, University Hospitals
Leuven, Leuven/BE

Peritoneal tumour: primitive versus secondary

Secondary peritoneal tumours much more frequent then primary

Computed Tomography: Difficult to predict peritoneal resectability or lymph node involvement

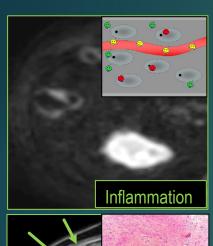
Insufficient accuracy to predict (in)complete resection

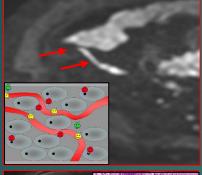

	Sensitivity	Specificity	PPV	NPV	Pre-test probability	Post-test probability
1. Ferrandina model A: cut-	-off > 5/8					
Ferrandina et al.	22,9	97.7	92.6	50.0	55.8	92.6
Reader 1	23,2	88.0	68.4	50.6	53.6	68.4
Reader 2	34.0	84.3	69.2	55.1	53.6	69,2
Reader 3	31,3	86.1	75.0	48.4	53.6	75.0
2. Ferrandina model B: cut-	off > 3/5					
Ferrandina et al.	23.9	97.7	92.8	50.3	55.8	92.8
Reader 1	18,2	92,0	71.4	50.5	53.6	71.4
Reader 2	32,3	88.5	76.9	52.3	53.6	76.9
Reader 3	31,3	85.7	75.0	47.6	53.6	75.0

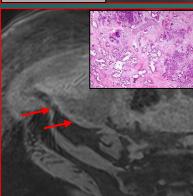
Rutten IJ et al, Gynecol Oncol 2016

^{**} Lower sensitivity for liver metastases in case of steatosis (31-38%)

- ** Lymph nodes < 1 cm difficult to stage Threshold nodal N+ chest = 0,5 cm!
- ** Small or less conspicuos peritoneal metastases: Intestinal serosa: 21-25% sensitivity Peritoneal metastases < 5 mm: 11% sensitivity

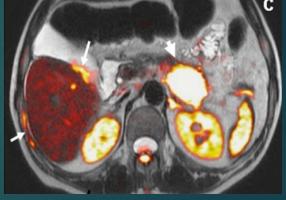



Diffuse carcinomatosis


Modality	Sensitivity	Specificity	Diagnostic OR
Region based	1		
CT	0.68 (0.46-0.84)	0.88 (0.81-0.93)	15.9 (4.38–58.01)
PET(CT)	0.79 (0.092)	0.90 (0.80-0.96)	36.5 (6.7–200.0)
(DW)MRI	0.91 (0.96)	0.85 (0.78-0.91)	63.3 (31.5–127.3)
Patient based			
CT	0.70 (0.53-0.83)	0.94 (0.87–0.97)	33.5 (16.3–69.0)

Data in parentheses are 95% confidence interval, OR odds ratio

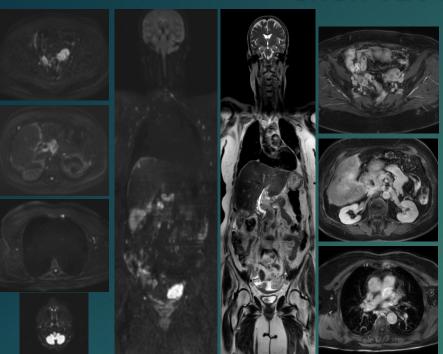
van 't Sant I et al, Eur Radiol 2020


Helsinki museum of art

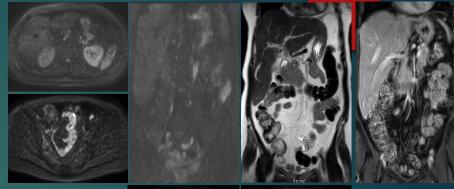
Rationale for (WB-)DWI/MRI

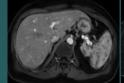
	PET/CT				MR-DWI				p
	Se	Sp	PPV	NPV	Se	Sp	PPV	NPV	
Sites									
Right supramesocolic	60 (3/5)	92 (23/25)	60 (3/5)	92 (23/25)	100 (5/5)	100 (25/25)	100 (5/5)	100 (25/25)	0.48
Left supramesocolic	25 (1/4)	96 (25/26)	50 (1/2)	89 (25/28)	50 (2/4)	100 (26/26)	100 (2/2)	93 (26/28)	1
Inframesocolic	72 (13/18)	75 (9/12)	81 (13/16)	64 (9/14)	72 (13/18)	83 (10/12)	87 (13/15)	67 (10/15)	0.08
Total	63 (17/27)	90 (57/63)	74 (17/23)	85 (57/67)	74 (20/27)	97 (61/63)	91 (20/22)	90 (61/68)	0.27
Interobserver agreement (κ)	0.92 (0.71,	1.12)			0.78 (0.57-	0.99)			

Soussan M Eur Radiol 2012

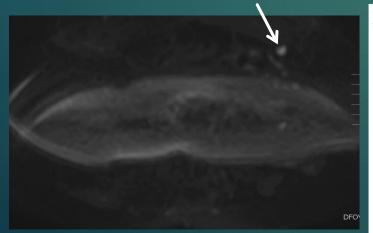


Not affected by underlying anatomy or metabolism

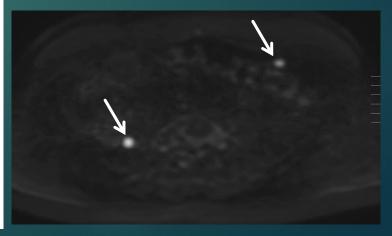

DWI improves site based lesion detection


detection of surgically critical disease site

Short Tau inversion recovery (STIR) DWI/MRI

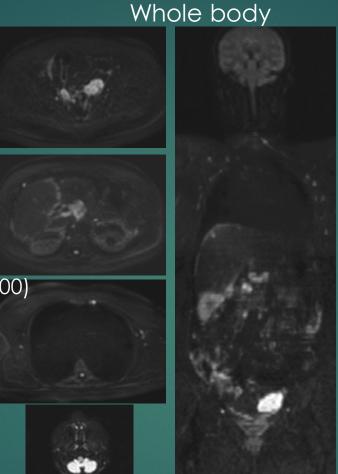

+ chest CT + PET/CT

* 3 hours fasting (reduces small bowel motility)

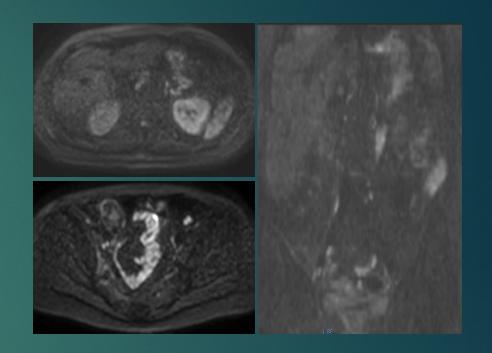

- * Negative peroral contrast :
- pineapple juice 7% barium/1 Liter water
- * Antispasmodic

Frequency-based fat-saturation DWI (SPAIR, SPIR,....)

Short Tau Inversion Recovery (STIR) DWI


Image interpretation: sequence selection

DWI = core sequence

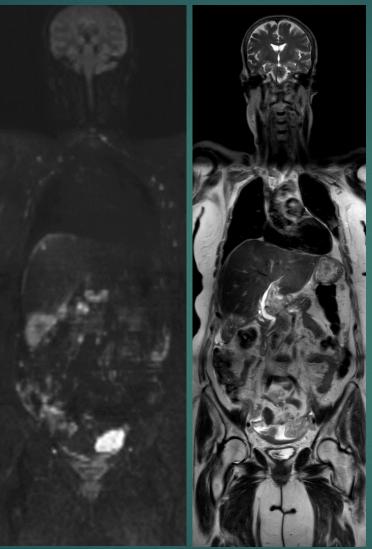

- Detection
- Characterization

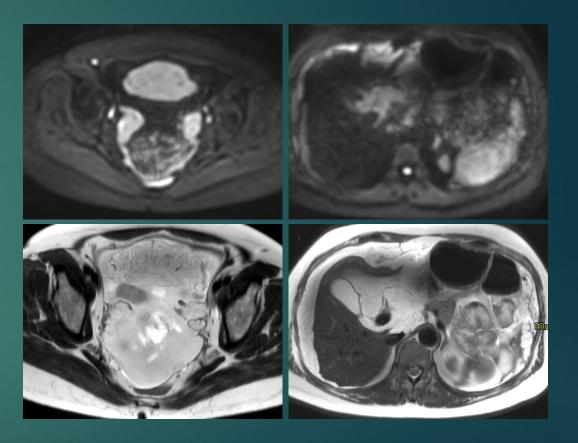
B-value: 1 low (0-50) and 1 high (b1000)

ADC minor to no role for staging

Whole Abdomen (+ chest CT orPET/CT)

- → Qualitative assessment: peritoneal implant = B1000 intensity not attributable to T2 shine-through
- bowel wall signal (pine apple/antispasmodic) or artifact (STIR)


Image interpretation: sequence selection


DWI's best friend

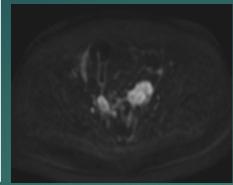
Coronal
T2 single shot
3 stacks (whole body)
48 cm z axis
Free breathing
6 mm
Stitch

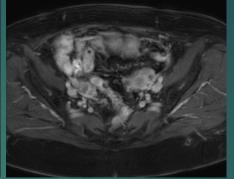
Transverse
T2 single shot 2 stacks
48 cm z axis
Abdomen -trigger
Pelvic - free breathing
6 mm
Stitch

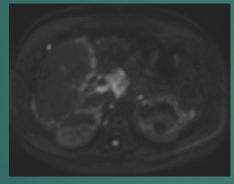
- * Anatomical correlation
- * Exclude T2 shine-through
- * Characterize mucinous tumour
- * Detect Non DWI-avid lesions

Fully replaces contrast imaging when contra-indication

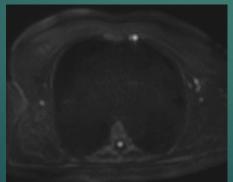
Image interpretation: sequence selection

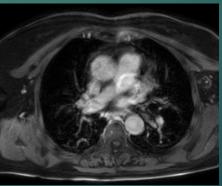

The surgeon's best fri<mark>end</mark>

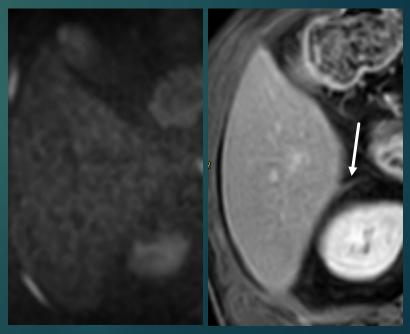

Post-Gadolinium T1 gradient-echo 3-5 minutes post-injection

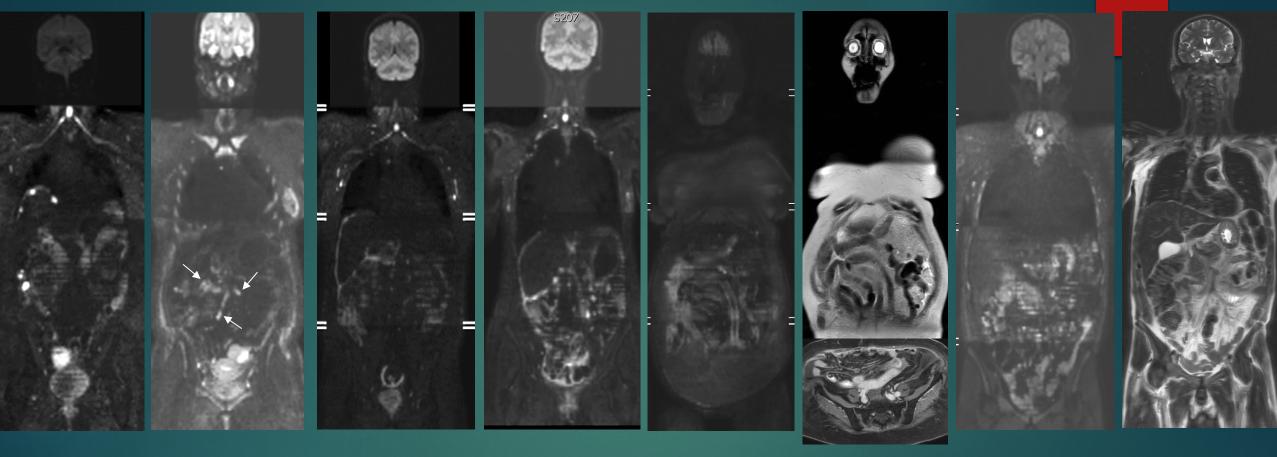

Breath-hold Pelvis/abdomen: transverse/Coronal

Chest: transverse


3 mm







Signet cell cancer

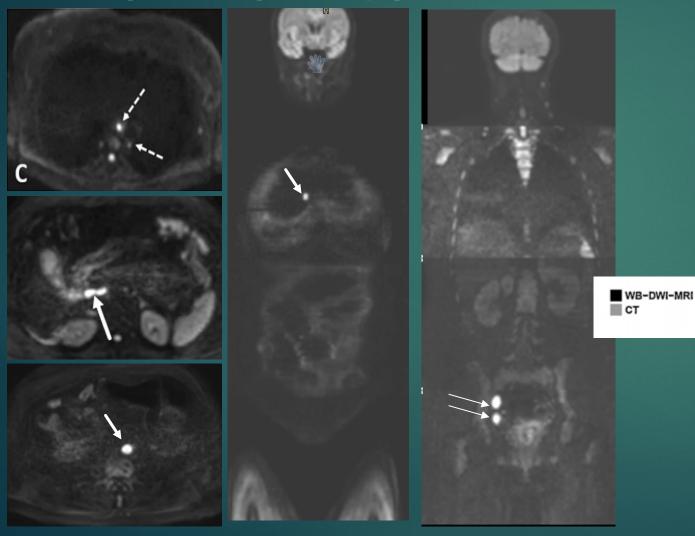
- * Anatomical correlation
- * Lesion detection < 4 mm
- = spatial resolution limit of DWI
- * Non DWI-avid lesions

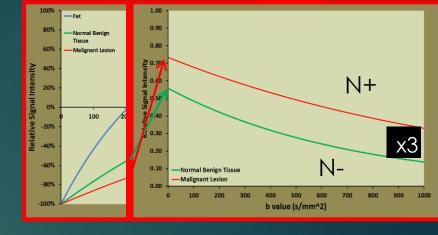
Image interpretation: b1000 + anatomical correlation

Nodular pattern

Confluent pattern

miliary pattern


infiltrative pattern


High grade ovarian – colorectal cancer

Lobular, low grade ovarian – gastric pancreatic cancer

Lymph nodes - lymphadenopathies

- Extra benefit of STIR = T1 based prepulse:
- Malignant lesions have a higher T1 than benign + better suppression of benign tissue
- Facilitates qualitative interpretation of lymph nodes

N+: SI ≥ primary tumor N- : SI < than primary tumor

N+: SI SI \geq primary tumor surrounding lymph nodes N-: SI \approx surrounding lymph nodes

Rizzo S et al. Eur J Radiol 2020

Re	etroperitoneum	TP	FN	FP	TN	Sens	Spec	PPV	NPV	Acc
	WB-DWI/MRI	10	3	3	29	0.77	0.91	0.77	0.91	0.87
	ст	7	6	7	25	0.54	0.78	0.50	0.81	0.71
	FDG-PET/CT	10	3	3	29	0.77	0.91	0.77	0.91	0.87

ovarian cancer 161 patients (Michielsen et al; Eur J Cancer 2017)

Table 2 Weighted summary of sensitivity, specificity, and OR for eac

	Sensitivity	Specificity
WB-DWI		
Pooled estimates	0.897	0.954
95%CI P value* I ² value	0.876-0.916 P-0.000 85.60%	0.944-0.962 P-0.000 91.40%
WB-PET/CT		
Pooled estimates	0.895	0.975
95%CI	0.865-0.920	0.900-0.981
P value*	P = 0.000	P-0.000
I ² value	90.40%	83.40%

Bin L et al, Eur J Radiol

Image interpretation: Distant metastases/lymphadenopathies

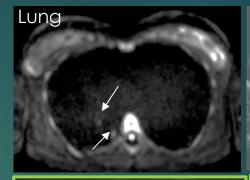
<u>lung metastases?</u>

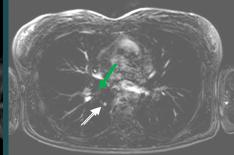
+ Equal performance as CTPer patient basis- Lower performancePer-lesion basis

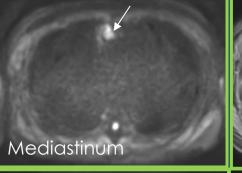
ORIGINAL ARTICL

Detection Rate, Location, and Size of Pulmonary Nodules in Trimodality PET/CT-MR

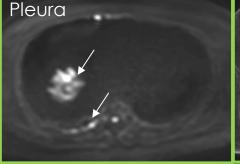
Comparison of Low-Dose CT and Dixon-Based MR Imaging

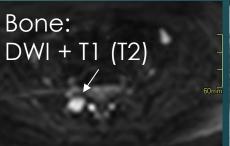

Paul Stolzmann, MD, Patrick Veit-Haibach, MD, Natalie Chuck, MD, Cristina Rossi, PhD, Thomas Frauenfelder, MD, Hatem Alkadhi, MD, MPH, Gustav von Schulthess, MD, PhD, MD(Hon), and Andreas Ross, MD, PhD

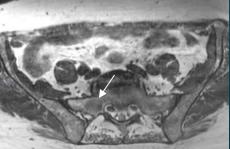

No. and Size (mm) of Nodules

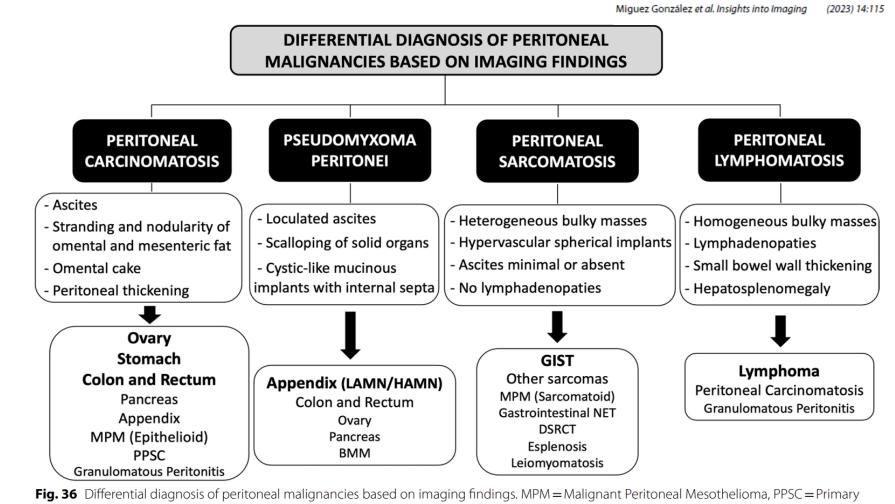

Low-dose CT	wo M	RI IP
n = 66	n = 56	n = 58
19 (19; 2–69)	18 (18; 2–64)	17 (17; 2–67)
n = 36	n = 33	n = 35
32 (18; 3–69)	28 (16; 6–64)	28 (16; 5–67)
n = 30	n = 23	n = 23
5 (5; 2–30)	6 (10; 2–50)	5 (4; 2–24)

Patient-Based Detection Rates (n = 40)

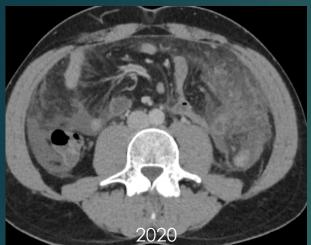

		, ,
Low-dose CT 34/40; 85%	WO M 33/40; 83%.	P IP 33/40; 83%
26/40; 65%	25/40; 63%	25/40; 63%
18/40; 45%	18/40; 45%	18/40; 45%

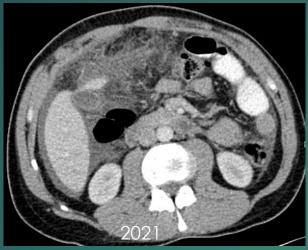






1/ Confirm primary origin




Fig. 36 Differential diagnosis of peritoneal malignancies based on imaging findings. MPM = Malignant Peritoneal Mesothelioma, PPSC = Primary Peritoneal Serous Carcinoma, LAMN = Low-Grade Appendiceal Mucinous Neoplasm, HAMN = High-Grade Appendiceal Mucinous Neoplasm, BMM = Benign Multicystic Mesothelioma, NET = Neuroendocrine Tumor, DSRCT = Desmoplastic Small Round Cell Tu

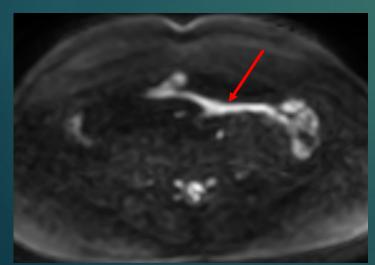
- DDx of primary from metastatic peritoneal tumours is non-straightforward
- Histopathology after core biopsies requiered for final diagnosis \rightarrow obliged in neoadjuvant chemotherapy
- Knwoledge of radiological features that can guide initial diagnosis → impact management

1/ Confirm primary origin: malignant mesothelioma

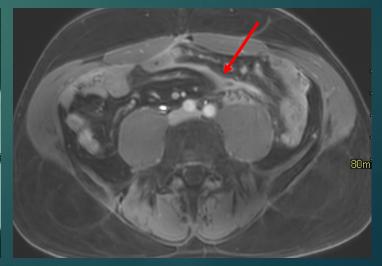
Patient 41 years old, over years periods of acute abdomen, relieved with corticoids/NSAID

Mesenteritis? - IgG4 inflammatory disease?

MRI:

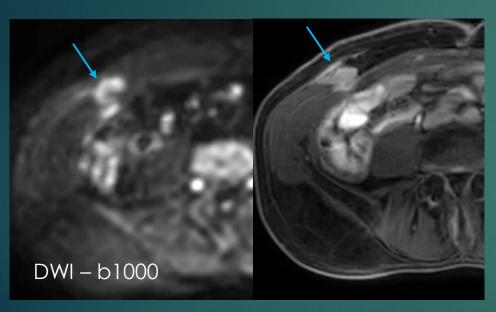

- *Operability? → predicts incomplete resection
- *Primary tumour? → none found

Laparoscopy:


- *Operability predicts complete resection
- * Histopathology after biopsy: malignant mesothelioma

Incomplete debulking surgery followed by atezolizumab

Best treatment appears corticoids/NSAID in 2024

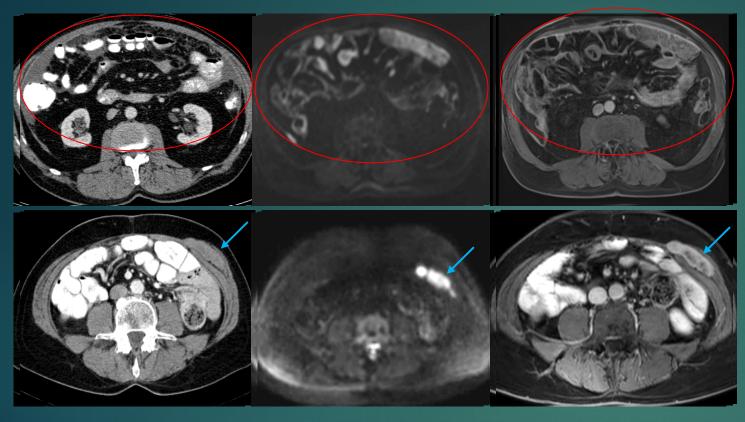


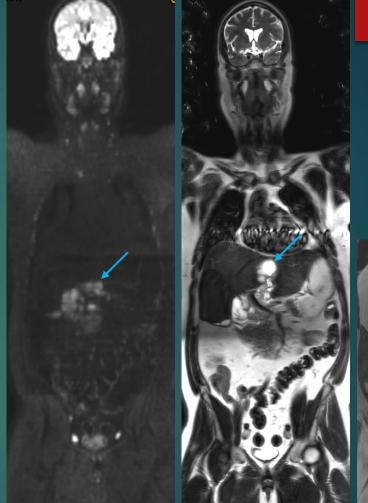

1/ Confirm primary origin: malignant mesothelioma

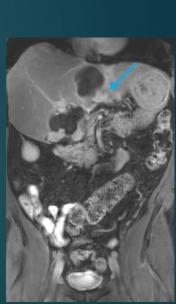
Clinical context:

Men 60% – Women 23% asbestosis exposure – 30% simultaenous pleural involvement Men (median 60 years) > women (median 50 years)
Occasionally seen in young patients without exposure history
Non-specific abdominal dyscomfort, pain, local palpable mass

Sarcomatoid type: solid masses "sarcomatoid" appearance






Epitheloid type: infiltrative, small nodules, multifocal "carcinomatosis" appearance

Imaging appearance does not strictly predict histological tumor type (mixed types

1/ Confirm primary origin: malignant mesothelioma

Main imaging feature:

Contrast-enhancement at CT and MRI: conspicuous at both modalities

Cystic component due to mucinous component or degeneration

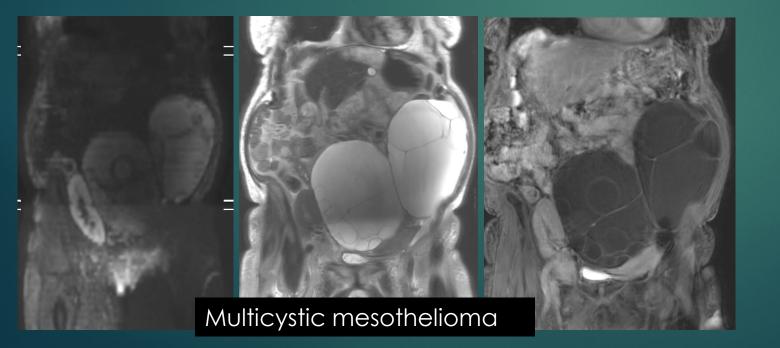
DWI b1000 +++ in the tumoral component,

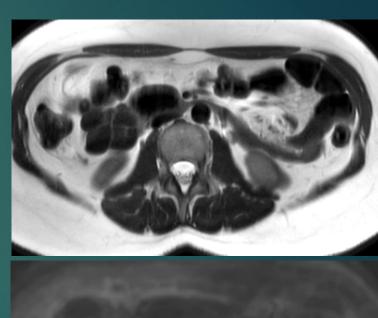
Absent DWI b1000 allows distinction of inflammatory component

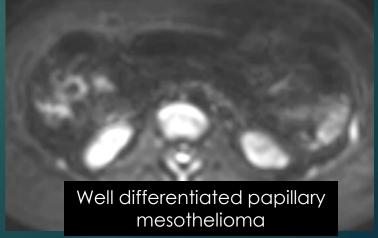
Differential diagnosis > histopathological diagnosis

As opposed to:

- Peritoneal metastases
- Infections like tuberculosis

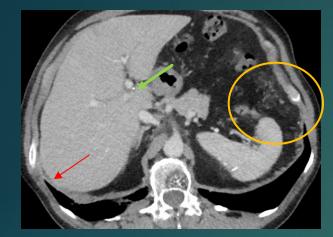

Consider when:

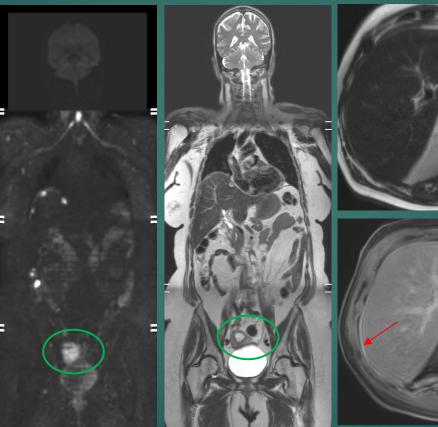

Absence of primary tumour; lymphadenopathies and visceral metastases Sheetlike thickening of peritoneum or sarcomatosis-like appearance Signs of asbestosis exposure

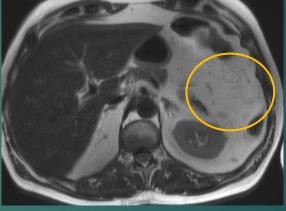

As opposed to:

- Well-differentiated mesothelioma
- Multicystic mesothelioma (uncertain malignant potential)

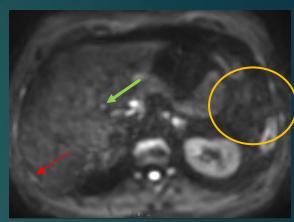
No diffusion restriction
Simple cystic nature
No ehancement






1/ Confirm primary origin: Primary peritoneal papillary serous carcinoma

60 year old patient with bloating and vaginal bleeding.



Peritoneale calcifications

WB-DWI/MRI for staging operability

No identifyable primary tumour Normal ovaries

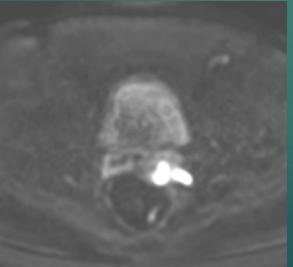
Upfront debulking surgery to R0: Primary peritoneal papillary serous carcinoma

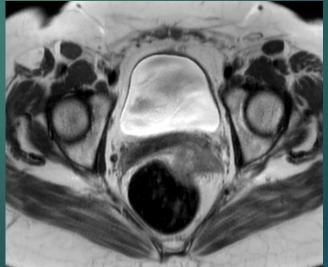
1/ Confirm primary origin: Primary peritoneal papillary serous carcinoma

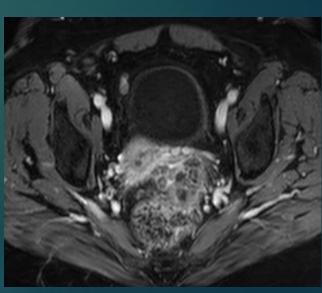
Women aged between 50 and 60 years old.

Complaints of abdominal distention, pain, bloating, nausea and vomiting. Increase of CA-125

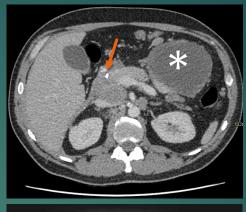
Histologically, immunohistochemically identical to metastatic serous ovarian carcinoma implants, but arises from extra-ovarian mesothelium with Mullerian potential

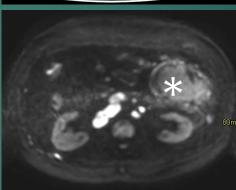

Treatment identical to ovarian cancer.


Imaging appearance overlaps with (low grade) ovarian cancer \rightarrow no identifiable tumour at the ovaries. Overall, mimic peritoneal metastases of ovarian cancer.


Key imaging feature: psammomatous calcifications (up to 30% of patients) and absence of ovarian mass.

→ Potential pitfall for MRI staging, calcified lesions less apparent.


1/ Uncertain origin: Desmoplastic small round cell tumour

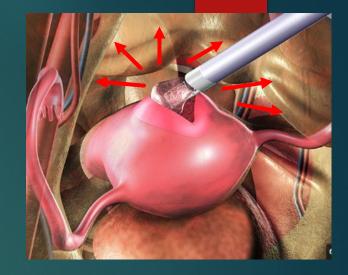

Men < 30 years (mean 19 years)
Non-specific abdominal complaints
Extremely rare

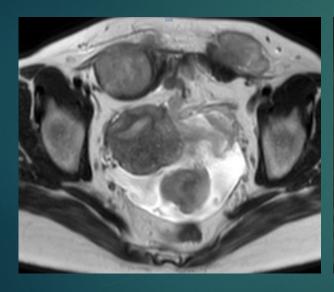
- Main imaging features:
- Diffuse peritoneal spread
- Dominant intraperitoneal tumour > 10 cm*
- with intratumoral necrosis
- Punctate calcifications in the tumoral masses
- Commonly lymph node and visceral metastases

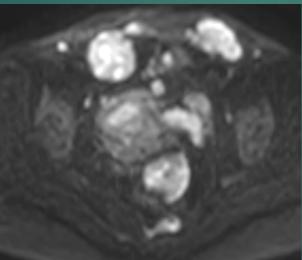
Differential diagnosis

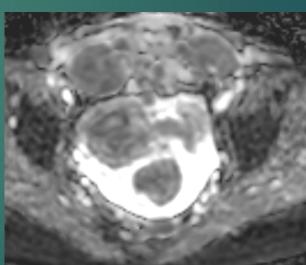
Lymphomatosis > carcinomatosis

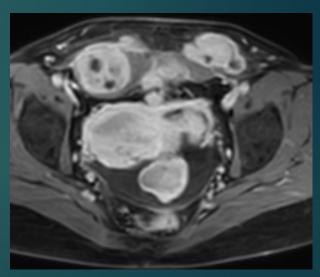
1/ Uncertain origin: disseminated peritoneal leiomyomatosis


Smooth muscle nodules and masses in the peritoneal cavity.


Metaplasia of submesothelial smooth muscle


Risk factors: uterine leiomyoma, high oestrogen levels


prior hysterectomy or myomectomy


myoma morcellation

Key imaging feature: T2, contrast-MRI and DWI behave like myometrium – increased ADC Differential diagnosis: Sarcomatosis, sarcomatoid mesothelioma

1/ Confirm primary ovarian malignancy ($\leftarrow \rightarrow$) exclude other cancer mimicking ovarian cancer

- → Key process in initial treatment selection: primary ovarian, colon, pancreatic, gastric cancer, NET...
- \rightarrow B1000 + anatomy
- → Often in the context of malignant ovarian mass ± peritoneal metastases

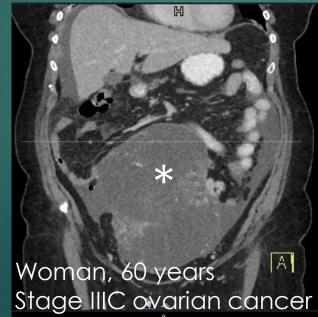
Primary tumour identification in peritoneal carcinomatosis

Direct idenfication of Primary tumour

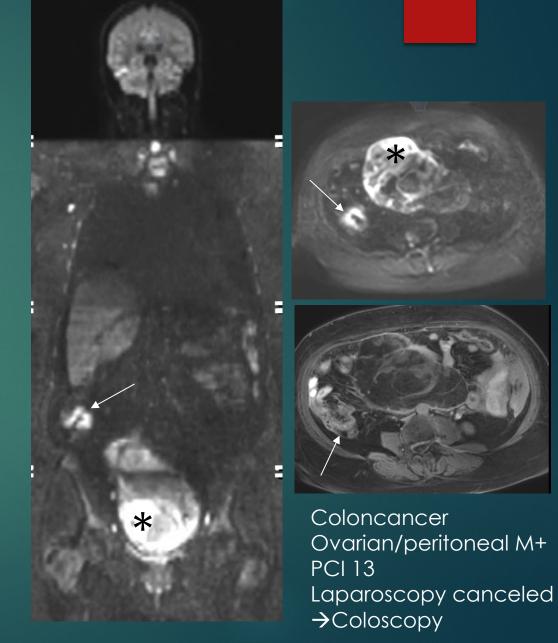
Radiological appearance
Peritoneal metastases
Carcinomatosis
Pseudomyxoma?
Sarcomatosis?
Lymphmatosis?
Neuroendocrine?

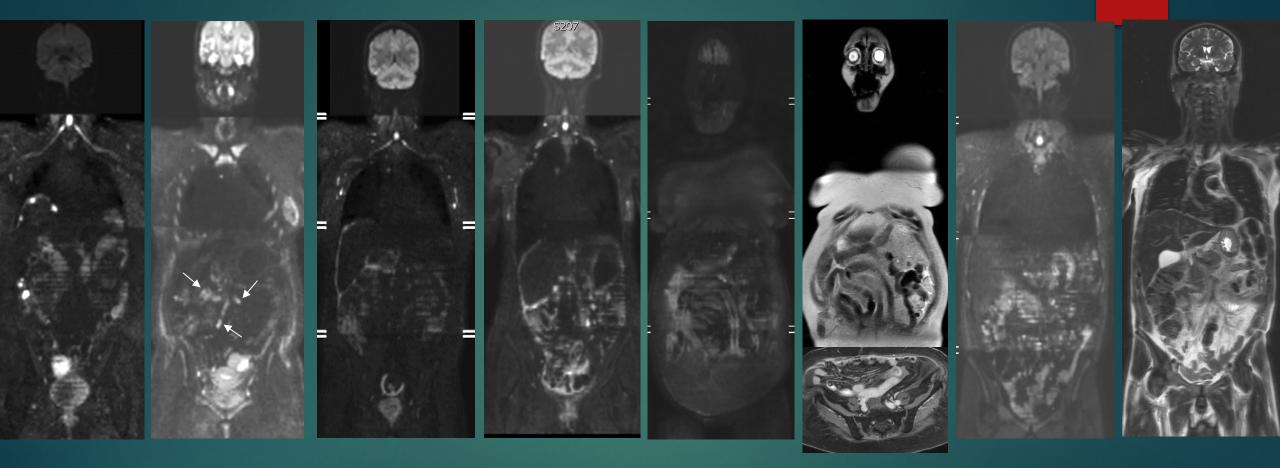
Atypical distribution of distant metastases: Liver, Bone, lung \rightarrow Search for other primary than ovarian

Fused b1000/DWI


Ovarian cancer Incidental breast cancer

Primary tumor ID: if ovarian mass


** WB-DWI : 81% accuracy
** CT : 31% accuracy


Michielsen K et al, EJC 2017

Direct idenfication of primary

Nodular pattern

Confluent pattern

Infiltrative/miliary pattern

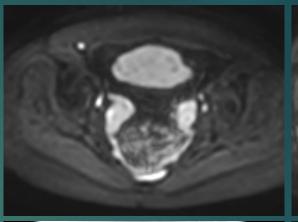
Signet ring cell patterr

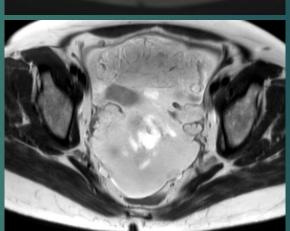
Peritoneal carcinomatosis: Ovary, Gl adenocarcinoma, **Gastric cancer**, Pancreas, lobular breast cancer Pattern not tumour specific but often detectable primary tumour (previous slide).

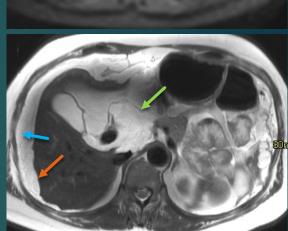
Pseudomyxoma peritonei:

Appendix: LAMN/HAMN 🖊

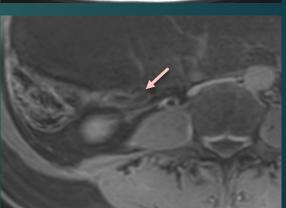
Colon/rectum: mucinous - worse prognosis


Ovary: mucinous - (rare) – Bad prognosis


Radiological features:


- Loculated ascites
- T2 -ADC halo at fluid/tissue interface
- Scalloping of solid organs /
- Solid and Cyst-like implantes with internal septae.

MRI > CT for detection mucinous implants


Main differential: Malignant mesothelioma (Mucinous degeneration)

Peritoneal sarcomatosis:

Heterogeneous group of tumours.

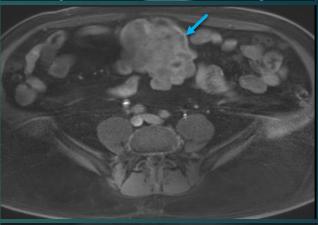
GIST: most frequent

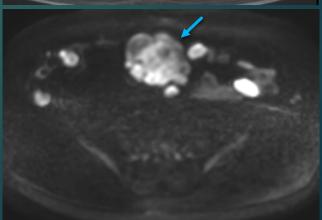
Leimyosarcoma

Liposarcoma (dedifferentiated and myxoid type)

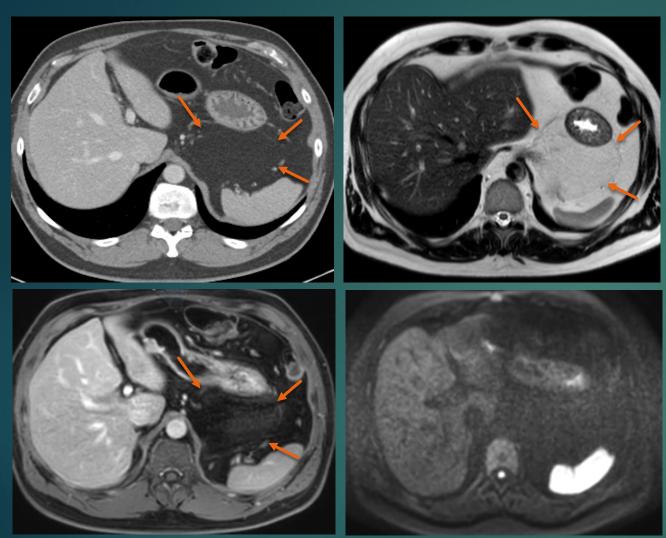
Myxoid (lipo)sarcomas (even extremity although rare)

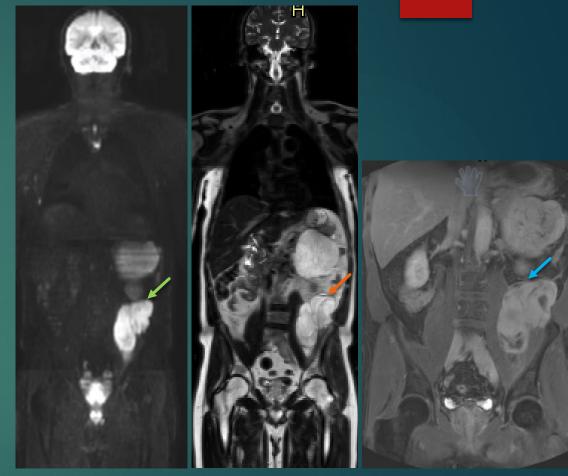
Key radiological features that allow differentiation:


- Bulky solid masses /
- Hyperenhancement and DWI +++
- Fat content (liposarcoma)
- Myxoid appearance (Myxoid sarcoma)
- → MRI > CT to characteriza and stage lesions

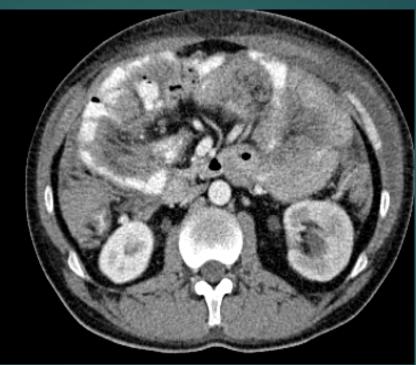

Detection more important than staging for operability assessment (exception for GIST.

Presence of peritoneal sarcomatosis = upfront inoperability


Main differential: sarcomatoid varian of mesothelioma

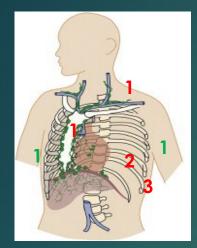


Peritoneal sarcomatosis: Liposarcoma



Man 52 years. Intraperitoneal recurrence Liposarcoma CT and MRI: Lipid content, thin walled

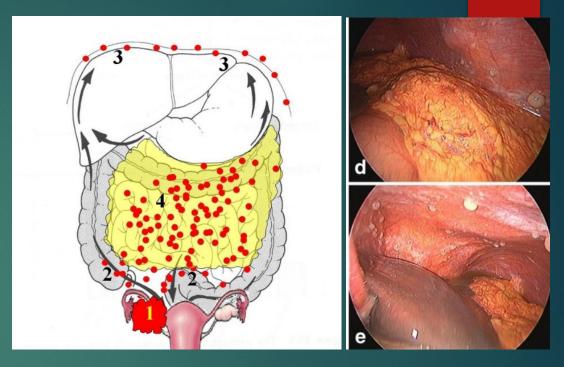
Man 41, years old, curative resection of Myxoid Liposarcoma of the knee



Man, 23 years, night sweats, abdominal pain, obstruction

Peritoneal lymphomatosis:
Mostly non-Hodkin large B-cell lymphoma.

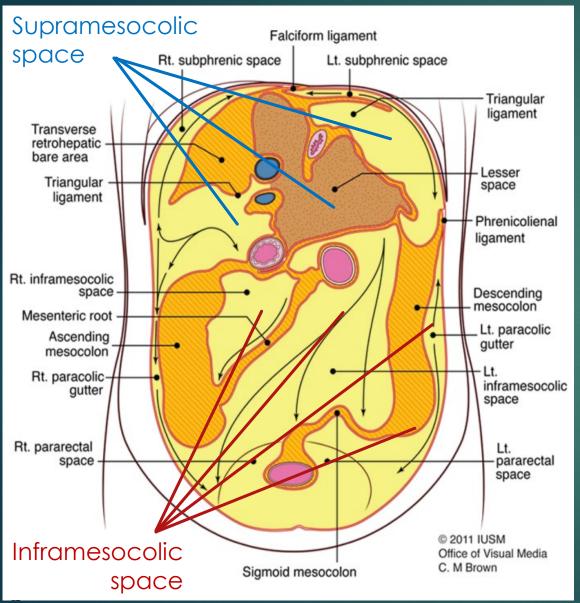
Radiological peritoneal findings can be non-specific and overlap with peritoneal carcinomatosis. Mildly enhancing bulky masses, wall thickening of long segments of small bowel loops. Search for typical patterns of lymphadenopathies. PET/CT imaging standard.

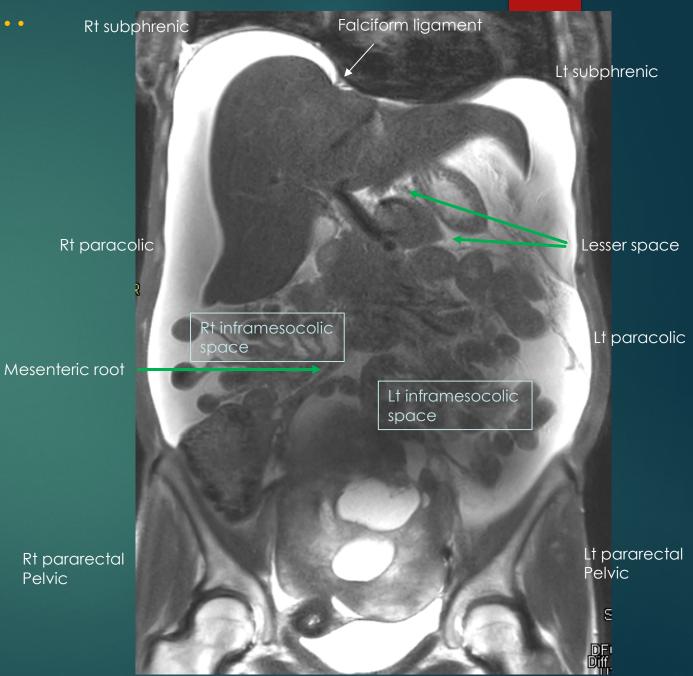

Diagnosis primary origin – operability – disease stage

2/ Distant metastases (Non-)Resectability?

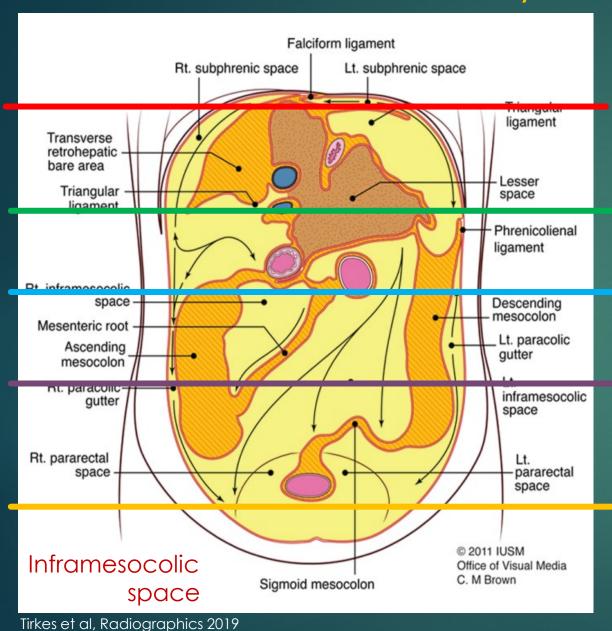
Resectability distant metastases? and lymph nodes (1)
Pleural metastases (2)
Suprarenal lymph nodes (3)

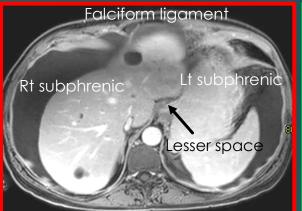
Liver, lungs, skeletal

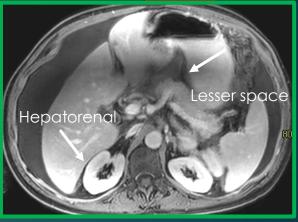

3/ Peritoneal metastases (Non-) Resectability?

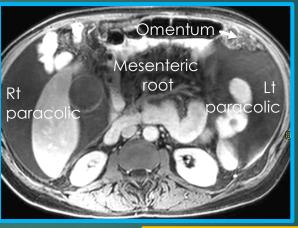

Surgically critical disease sites
Peritonal cancer index

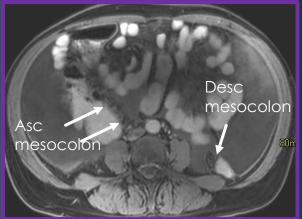
4/ Complications
Hydro-ureteronefrosis
Thrombosis

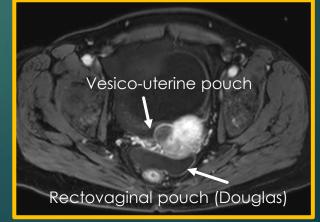

• • • •

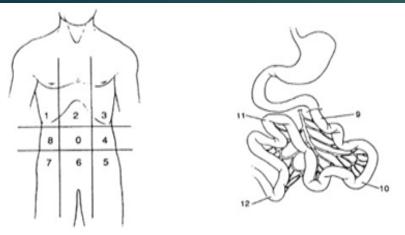

From Peritoneal anatomy....






From Peritoneal anatomy...





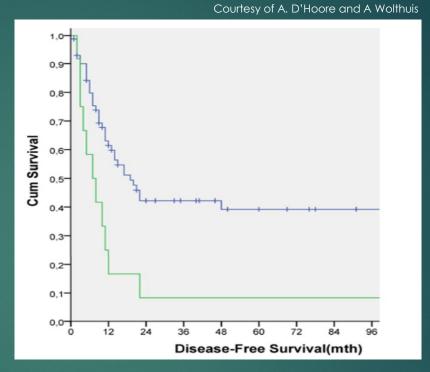
To surgically critical peritoneal anatomy.....

×

Regions Lesion Size

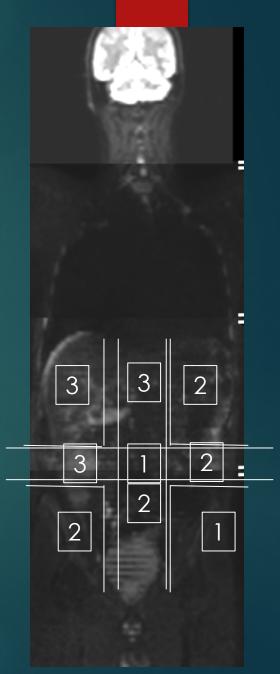
- o central
- 1 Right upper _____
- 2 Epigastrium
- 3 Left upper _____
- 3 Lett upper
- 4 Left flank
- 5 Left lower _____
- 6 Pelvis
- 7 Right lower
- 8 Right flank
- 9 Upper jejunum _____
- 10 Lower jejunum _____
- 11 Upper ileum
- 12 Lower ileum _____

PCI 0-39


LS o No tumor seen

LS 1 ≤ 0.5 cm

LS 2 > 0.5 cm to ≤ 5.0 cm


LS 3 > 5 cm or confluence

PCI > 15 threshold → surival

1/Peritoneal Cancer Index

To surgically critical peritoneal anatomy.....

2/standardized predictive score

Espada M et al, Eur Radiol 2013

Table 1 Fledictive accuracy of Dwiving for affection of anatomical sites in EL	Table 1	Predictive accuracy	of DWMRI f	for affection o	f anatomical sites in EL
--	---------	---------------------	------------	-----------------	--------------------------

Anatomic feature		Sensitivity	Specificity
Involvement of small and/or la	rge bowel mesentery	100 % (8/8)	84.6 %(22/26)
Involvement of hepatic parenc or surface implant >2 cm	hyma, hepatic hylium	80.0 % (8/10)	83.3 % (20/24)
Involvement of spleen parench stomach or lesser sac	yma, spleen hylium,	100 % (11/11)	100 % (23/23)
Involvement of diaphragm		80.0 % (4/5)	96.6 % (28/29)
Peritoneal thickening		69.2 % (9/13)	81.0 % (17/21)
Peritoneal macroscopic implan	ts (≥2 cm)	69.2 % (9/13)	81.0 % (17/21)
Massive ascites		50.0 % (4/8)	92.0 % (23/25)
Suprarenal para-aortic lymph i	nodes (≥1 cm)	100 % (5/5)	86.2 % (25/29)
Miliar visceral peritoneum imp	olants	91.7 % (11/12)	95.5 % (21/22)
Involvement of pelvic sidewal	and/or hydroureter	100 % (1/1)	93.9 % (31/33)

	Essen criteria	Leuven criteria	
	Biopsy with histologically proven epithelial ovarian (or tul	bal or peritoneal) cancer FIGO stage IIIC-IV	
	-	Or fine needle aspiration proving the presence of carcinoma cells in patients with a suspicious pelvic mass if CA125 (KU/L)/CEA (ng/mL)	
П		ratio is > 25. If the serum CA125/CEA ratio is ≤ 25, imaging or endoscopy	
		is obligatory to exclude a primary gastric, colon or breast carcinoma	
П	Involvement of the superior mesenteric artery		
П	Diffuse deep infiltration of the radix mesenterii of the small	l bowel	
	Diffuse and confluent carcinomatosis of the stomach and/o short bowel syndrome or a total gastrectomy	or small bowel involving such large parts that resection would lead to a	
	Multiple parenchymatous liver metastases in both lobes	Intrahepatic metastases	
П	Tumor involving large parts of the pancreas (not only tail)	Infiltration of the duodenum and/or pancreas and/or the large vessels of	
П	and/or the duodenum	the ligamentum hepatoduodenale, truncus coeliacus or behind the porta	
П	Tumor infiltrating the vessels of the lig. Hepatoduodenale	hepatis	a
	or truncus coeliacus		
	Not completely resectable metastases, as eg.	All excluding:	
П	- Multiple parenchymal lung metastases (preferably	- Resectable inguinal lymph nodes	a
П	histologically proven)	- Solitary resectable retrocrual or paracardial nodes	
	- Non resectable lymphnode metastases	- Pleural fluid containing cytologically malignant cells	
	- Brain metastases	without proof of the presence of pleural tumors	

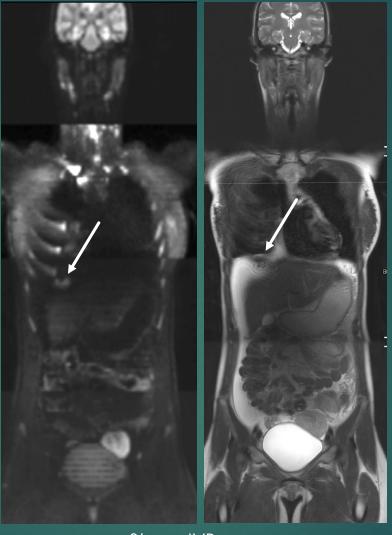
Vergote I, et al. Gynecol Oncol. 2013;128(1):6-11.

Table 3 Predictive parameters upon the score threshold selected NPV Specificity PPV Total score Sensitivity Accuracy Unnecessarily Inappropriately explored (%)a points unexplored (%)b DWMRI 100 % (8/8) 34.6 % (9/26) 32.0 % (8/25) 100 % (9/9) ≥1 50 % (17/34) 0 % 65.4 % (17/26) ≥2 100 % (8/8) 61.5 % (16/26) 44.4 % (8/18) 100 % (16/16) 70.5 % (24/34) 0 % 38.5 % (10/26) >3 100 % (8/8) 69.2 % (18/26) 50.0 % (8/16) 100 % (18/18) 76.4 % (26/34) 30.8 % (8/26) 58.3 % (7/12) 82.3 % (28/34) 12.5 % (1/8) 19.2 % (5/26) ≥4 87.5 % (7/8) 80.8 % (21/26) 95.5 % (21/22) ≥5 75.0 % (6/8) 92.3 % (24/26) 75.0 % (6/8) 92.3 % (24/26) 88.2 % (30/34) 25.0 % (2/8) 7.7 % (2/26) ≥6 25.0 % (2/8) 3.8 % (1/26) 75.0 % (6/8) 96.2 % (25/26) 85.7 % (6/7) 92.6 % (25/27) 91.1 % (31/34) 62.5 % (5/8) 96.2 % (25/26) 83.3 % (5/6) 89.3 % (25/28) 88.2 % (30/34) 37.5 % (3/8) 3.8 % (1/26) ≥8 12.5 % (1/8) 100 % (26/26) 100 % (1/1) 78.8 % (26/33) 79.4 % (27/34) 87.5 % (7/8) 0 % (0/26)

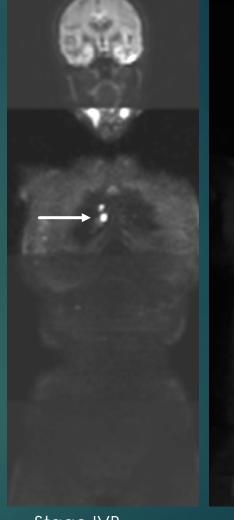
3/Site based predictive score

2/ Distant metastases/lymphadenopathies in ovarian cancer (Stage IVA and IVB - (Non-)Resectability?

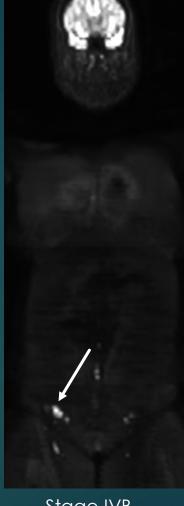
Resectable metastases


- Inguinal, axillary N+
- Solitary retrocrural or paracardiac N+
- Cytology + pleural fluid without deposits

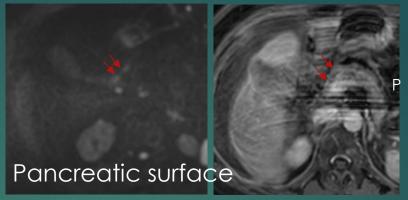
Irresectable metastases


- Multifocal lung- or liver M+
- Brain metastases
- Irresectable N+:
 - Mediastinum
 - Internal mammary chain
 - Neck
 - Retroperitoneum above renal vein

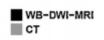
Resectable – upfront or after NACT Depending on abdominal disease

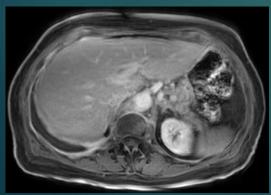

Pleural metastases lower 1/3 chest

Stage IVB irresectable


Stage IVB resectable

Rizzo S et al, Eur J Radiol 2020


3/ Peritoneal metastases: (Non-)Resectability?



** Upper abdomen

WB-DWI/MRI	15	1	77	1	93.8 [71.7-98.9]	98.7 [93.1-99.8]	93.8 [71.7-98.9]	98.7 [93.1-99.8]	97.9 [92.6-99.4]
ст	11	1	77	5	68.8 [44.4-85.8]	98.7 [93.1-99.8]	91.7 [64.6-98.5]	93.9 [86.5-97.4]	93.6 [86.8-97.0]

Michielsen K et al, EJC 2017

Rizzo S et al, Eur J Radiol 2020

Involvement of hepatic parenchyma, hepatic hylium 80.0 % (8/10) 83.3 % (20/24) 66.6 % (8/12) 90.9 % (20/22) or surface implant >2 cm

Espada M et al, Eur Radiol 2013

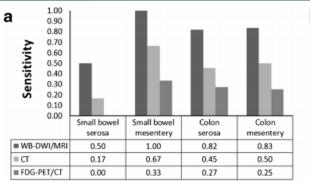
Rizzo S et al, Eur J Radiol 2020

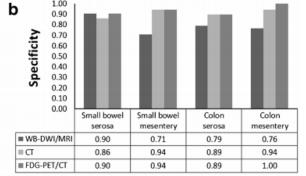
Pericardiophrenic lymph nodes 28 10 1 15 28 6 3 13 89.3 (71.8-97.7) 67.9 (47.6-84.1)

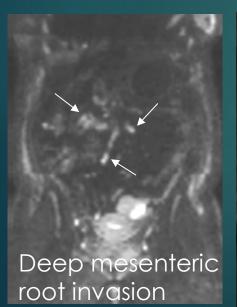
0.01

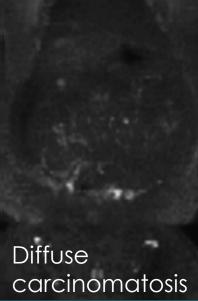
3/ Peritoneal metastases: (Non-)Resectability?

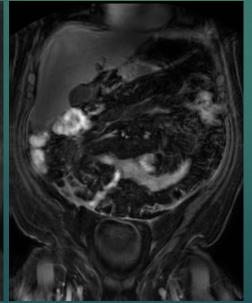
Eur Radiol (2014) 24:889-901 DOI 10.1007/s00330-013-3083-8

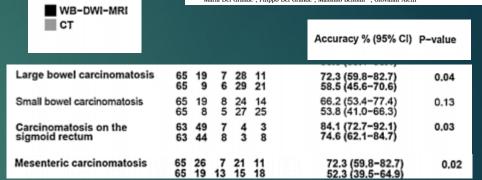

UROGENITAL

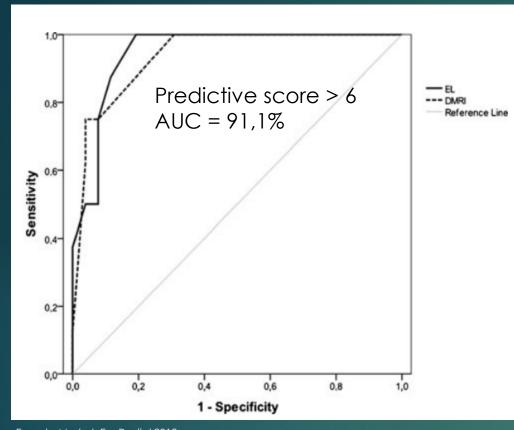

Whole-body MRI with diffusion-weighted sequence for staging of patients with suspected ovarian cancer: a clinical feasibility study in comparison to CT and FDG-PET/CT


Katrijn Michielsen • Ignace Vergote • Katya Op de beeck • Frederic Amant • Karin Leunen · Philippe Moerman · Christophe Deroose · Geert Souverijns · Steven Dymarkowski · Frederik De Keyzer · Vincent Vandecaveye


Intestinal deposits







Bowel serosal and me	senteri	al invo	lveme	Specificity	Sensitivity	Асситасу	
Our study US	34	18	2	13	0.94	0.42	0.70
			_		(0.81-0.99)	(0.25-0.61)	(0.58-0.81)
WB-DWI/MRI	32	11	4	20	0.89	0.65	0.78
OT	22		2	20	(0.74=0.97)	(0.45=0.81)	(0.66–0.87) 0.79
CT	33	11	5	20	0.92 (0.78=0.98)	0.65 (0.45=0.81)	(0.67-0.88)
					(0.78-0.98)	(0.45-0.81)	(0.67-0.88)

Fischerova D et al, Ultrasound Obstet Gynecol. 2022

Predicting R0 surgery in primary diagnosis of ovarian cancer: MRI >>>>CT

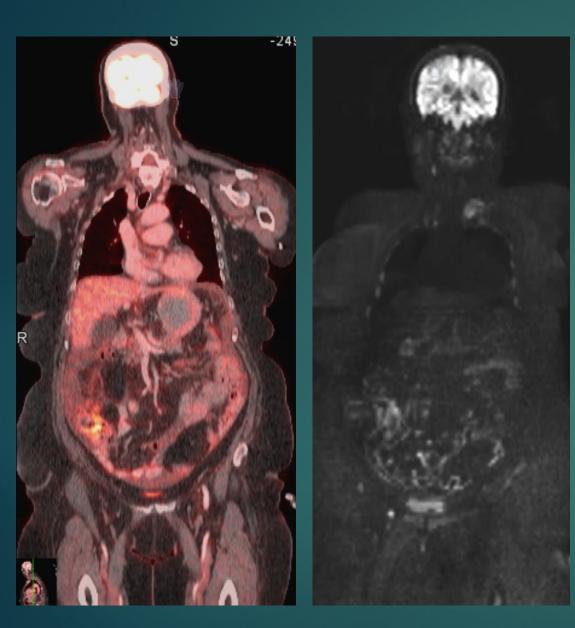
Espada M et al, Eur Radiol 2013

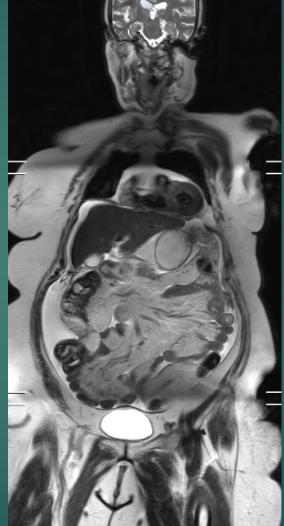
standardized predictive score

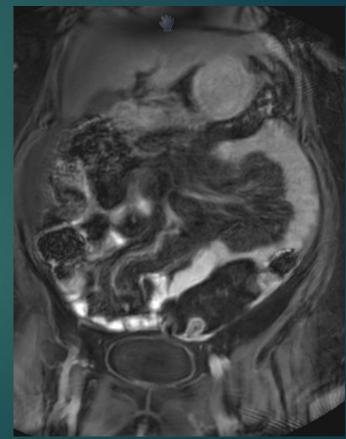
Table 4
Comparative accuracy for predicting incomplete resection.

Diagnostic accuracy	WB-DWI	CT
TP	47	33
FP	1	10
TN	43	34
FN	3	17
Sensitivity ^a	94.0 (84–98)	66.0 (52–78)
Specificity ^a	97.7 (88–100)	77.3 (63–87)
Positive predictive value ^a	97.9 (89–100)	76.7 (62–87)
Negative predictive value ^a	93.5 (83–98)	66.7 (53–78)
Accuracy ^a	95.7 (90–98)	71.3 (61-79)

WB-DWI, whole body diffusion-weighted imaging; CT, computed tomography; TP, true positive; FP, false positive; TN, true negative; FN, false negative.

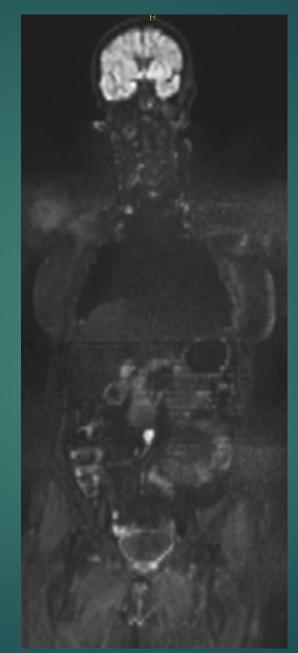

a Numbers indicate percentages (95% confidence interval based on Wilcon Score).


Michielsen K et al, EJC 2017


Site based interpretation

Prediction of (in)complete resection → operability assessment

WB-DWI/MRI in primary ovarian cancer staging and operability assessment


New diagnosis of ovarian cancer: PET/CT limited disease load – WB-DWI/MRI diffuse invasive miliary M+ (IIIC)

WB-DWI/MRI in primary ovarian cancer staging and operability assessment

CT-scan: Retroperitoneal adenopathy

→ MRI peritoneal staging prior to secundairy debulking surgery

MRI - Diseases of the peritoneum – take home messages

* Metastatic peritoneal tumours most common – consider also primary diseases

- * MRI sequence protocol is basic but should cover large volume:
- STIR-DWI > SPAIR DWI for whole body or full abdomen MRI
- T2, DWI (b50-1000) and 3-5 minutes delayed contrast-MRI (Transverse and coronal)
- * MRI protocol takes 38 minutes or less, more complicated interpretation, high precision in small lesion detection:
- → Operability assessment

MRI anatomy should match surgical anatomy to standardize communication with referring clinician

- ** Surgically critical tumour sites
- ** Peritoneal Cancer Index