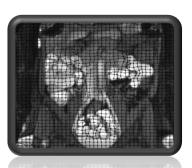

Essentials of small bowel MRI



Stuart Taylor
Professor of Medical Imaging
University College London

What do we want with MRI in IBD?

Have robust and reproducible MRI protocols

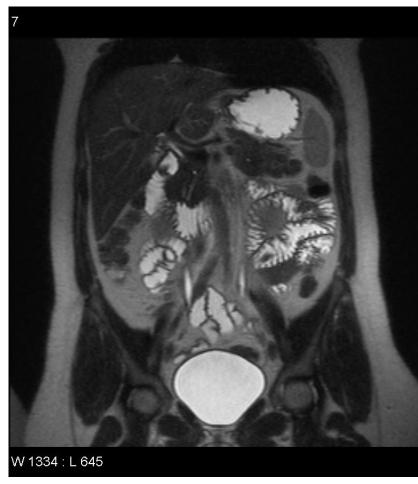
- Diagnose IBD with high accuracy
- Evaluate disease activity
- Monitor treatment

Eur Radiol (2017) 27:2570–2582 DOI 10.1007/s00330-016-4615-9

GASTROINTESTINAL

The first joint ESGAR/ ESPR consensus statement on the technical performance of cross-sectional small bowel and colonic imaging

```
S. A. Taylor<sup>1</sup> · F. Avni<sup>2</sup> · C. G. Cronin<sup>3</sup> · C. Hoeffel<sup>4</sup> · S. H. Kim<sup>5</sup> · A. Laghi<sup>6</sup> · M. Napolitano<sup>7</sup> · P. Petit<sup>8</sup> · J. Rimola<sup>9</sup> · D. J. Tolan<sup>10</sup> · M. R. Torkzad<sup>1</sup> · M. Zappa<sup>11</sup> · G. Bhatnagar<sup>1</sup> · C. A. J Puvlaert<sup>12</sup> · J. Stoker<sup>12</sup>
```


Open access so free to download!

BASIC PREPARATION

MRE/ MR enteroclysis

Bowel prepration

- There is no single preferred contrast agent for MRE Recommended agents include mannitol (with or without locust bean gum), PEG, sorbitol and lactulose amongst others (III)
- The optimal volume of oral contrast is 1000-1500 mL (III)
- Ingestion time of oral contrast without previous major small bowel resection should be 46-60 minutes (V)
- It is not recommended that laxative bowel preparation is administered (V)
- It is not recommended that a rectal water enema is administered before a routine examination (V)

MR Enterography Technique

<u>T1</u>

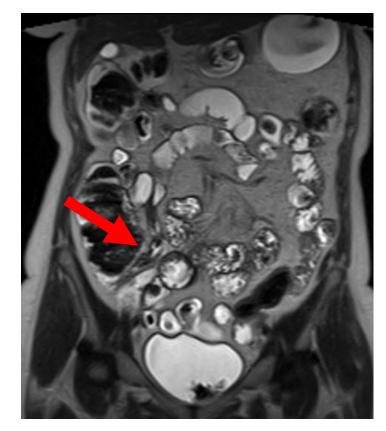
Most use Biphasic - low T1, high T2

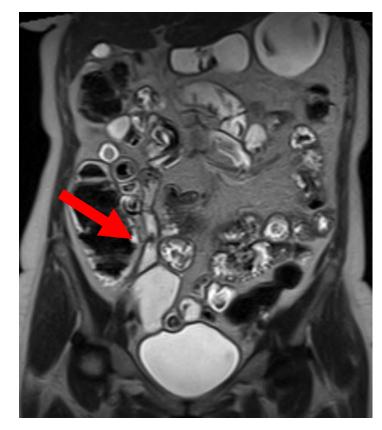
Mannitol 2.5%

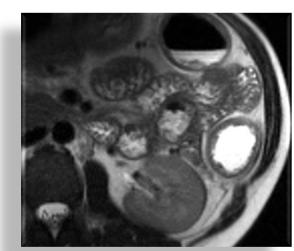
Mannitol 2.5% and Locust Bean Gum 0.2%

Methylcellulose 2%

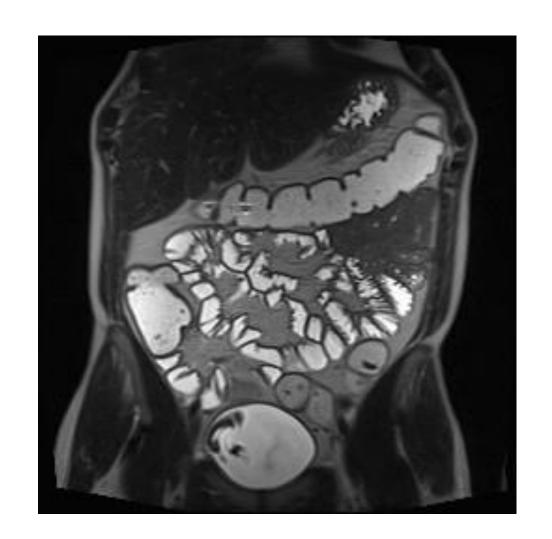
PolyEthyleneGlycol (PEG)

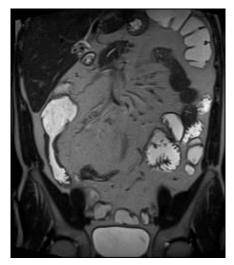

Volumen / Barium 0.1%

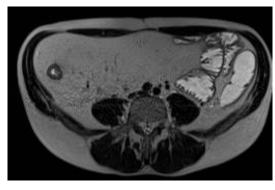

ispaghula

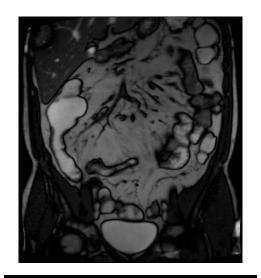

Young B et al. JCAT 2008

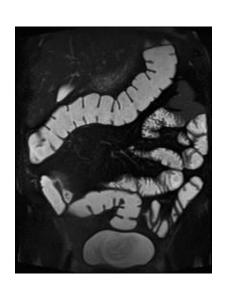
Kuehle C et al. AJR 2006

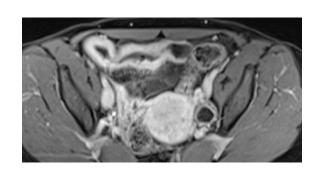


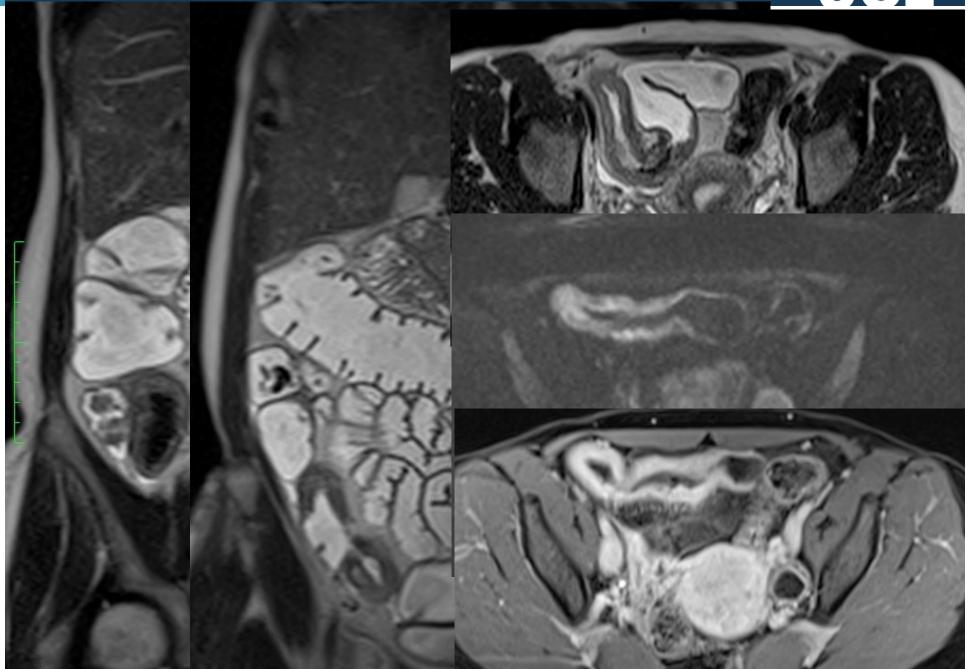


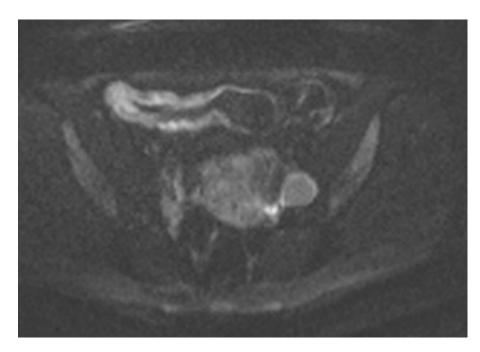


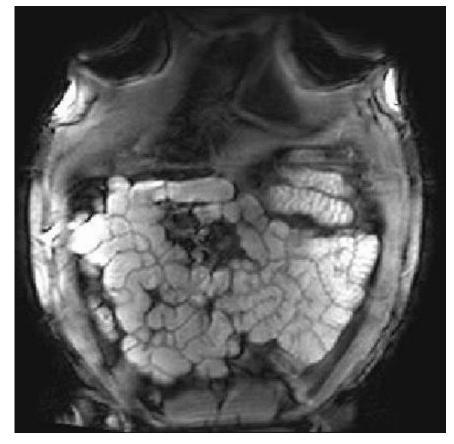

MRI sequences


- It is recommend to use the following sequences (V)
- Axial and coronal fast spin echo (FSE) T2W sequences without fat saturation
- Axial and coronal steady state free precession gradient echo (SSFP GE) sequences without fat saturation
- An axial or coronal FSE T2W sequence with fat saturation
- Non-enhanced coronal T1W sequence with fat saturation followed by contrast-enhanced coronal and axial T1W sequences with fat saturation
- In patients with known or suspected IBD, contrast-enhanced sequences should be in the enteric (45 s) or portal venous phase (70 s)









MRI sequences optional

- Optional additional sequences include an additional FSE T2W sequence with fat saturation, axial and coronal SSFP GE sequences with fat saturation, cine motility and diffusion weighted imaging (V)
- Free breathing technique if diffusion-weighted sequences are performed
 (IV)
- DWI should include lower b values ranging from 0 or 50 and upper b
 values ranging from 600 to 900 (IV)
- Maximal slice thickness for a diffusion-weighted sequence should be 5
 mm (V)

Contents lists available at ScienceDirect

European Journal of Radiology

journal homepage: www.elsevier.com/locate/ejrad

Influence of diffusion weighted imaging and contrast enhanced T1 sequences on the diagnostic accuracy of magnetic resonance enterography for Crohn's disease

Gauraang Bhatnagar ^a, Sue Mallett ^a, Richard Beable ^b, Rebecca Greenhalgh ^c, Rajapandian Ilangovan ^c, Hannah Lambie ^d, Evgenia Mainta ^c, Uday Patel ^c, François Porté ^c, Harbir Sidhu ^a, Arun Gupta ^{c,e}, Anthony Higginson ^b, Andrew Slater ^f, Damian Tolan ^d, Ian Zealley ^g, Steve Halligan ^a, Stuart A Taylor ^{a,*}, on behalf of the METRIC study investigators

73 patients read by 2 radiologist from a pool of 13
T2 and SSFP GE images
T2 and SSFP GE images plus DWI
T2 and SSFP GE images Plus DWI and post contrast enhancement

Sequence block	DP	TP	FN		Sensitivity (95% CI)	Sequence block	DN	TN	FP		Specificity (95% CI)
All patients						All patients					
T2^	118	94	24		80 (72, 86)	T2^	28	23	5		82 (64, 92)
T2+DWI^	118	96	22	-	81 (73, 87)	T2+DWI^	28	23	5		82 (64, 92)
T2+DWI+CE^	111	88	23	-	79 (71, 86)	T2+DWI+CE^	28	23	5		82 (64, 92)
New diagnosis						New diagnosis					
T2^	52	43	9		83 (70, 91)	T2^	4	2	2		50 (15, 85)
T2+DWI^	52	44	8		85 (73, 92)	T2+DWI^	4	3	1	+	75 (30, 95)
T2+DWI+CE^	47	38	9		81 (68, 90)	T2+DWI+CE^	4	3	1	*	75 (30, 95)
Relapse						Relapse					
T2^	66	51	15		77 (66, 86)	T2^	24	21	3		88 (69, 96)
T2+DWI^	66	52	14		79 (68, 87)	T2+DWI^	24	20	4		83 (64, 93)
T2+DWI+CE^	64	50	14		78 (67, 87)	T2+DWI+CE^	24	20	4		83 (64, 93)
			0	20 40 60 80 1 Sensitivity	000				0	20 40 60 80 1 Specificity	100

DP TP FN

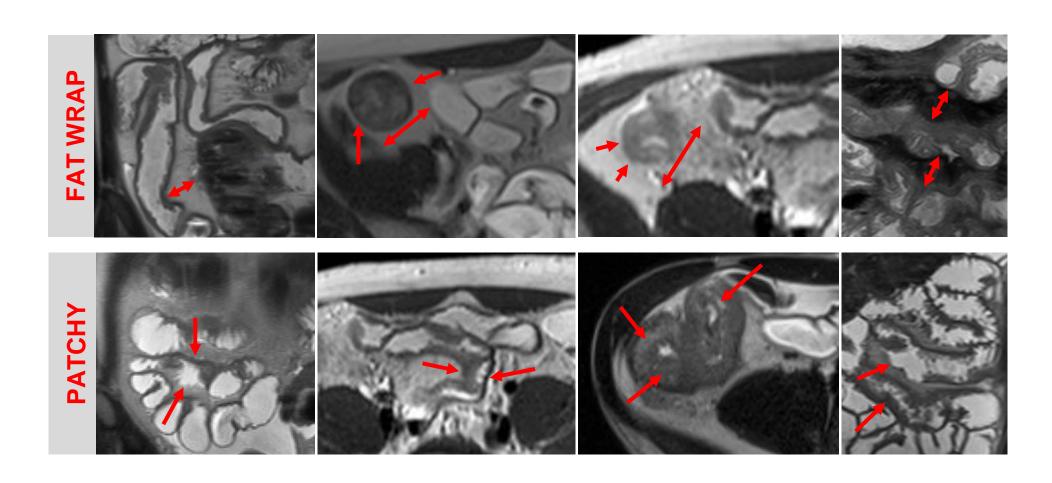
Sequence

block

Disease presence

Disease extent

All patients					
T2^	118	66	52		56 (47, 65)
T2+DW I ^	118	66	52		56 (47, 65)
T2+DWI+CE^	111	58	53		52 (43, 61)
New diagnosis					
T2^	52	33	19		64 (50, 75)
T2+DWI^	52	32	20		62 (48, 74)
T2+DWI+CE^	47	27	20		57 (43, 71)
Relapse					
T2^	66	33	33		50 (38, 62)
T2+DWI^	66	34	32		52 (40, 63)
T2+DWI+CE^	64	31	33		48 (37, 60)
					
			0	20 40 60 80	100
				Sensitivity	


Sensitivity (95% CI)

block	DN	TN	FP	Specificity (95% CI)
A patients				
T2^	28	23	5	*************************************
T2+DWI^	28	23	5	*** 82 (64, 92)
T2+DWI+CE^	28	23	5	82 (64, 92)
New diagnosis				
T2^	4	2	2	* 50 (15, 85)
T2+DWI^	4	3	1	75 (30, 95)
T2+DWI+CE^	4	3	1	75 (30, 95)
Relapse				
T2^	24	21	3	*************************************
T2+DW ^	24	20	4	83 (64, 93)
T2+DWI+CE^	24	20	4	

Role of MRI

Diagnosis

First large, prospective, multicentre head-tohead comparison

Diagnostic accuracy of magnetic resonance enterography and small bowel ultrasound for the extent and activity of newly diagnosed and relapsed Crohn's disease (METRIC): a multicentre trial

Stuart A Taylor, Susan Mallett, Gauraang Bhatnagar, Rachel Baldwin-Cleland, Stuart Bloom, Arun Gupta, Peter J Hamlin, Ailsa L Hart, Antony Higginson, Ilan Jacobs, Sara McCartney, Anne Miles, Charles D Murray, Andrew A Plumb, Richard C Pollok, Shonit Punwani, Laura Quinn, Manuel Rodriguez-Justo, Zainib Shabir, Andrew Slater, Damian Tolan, Simon Travis, Alastair Windsor, Peter Wylie, Ian Zealley, Steve Halligan, on behalf of the METRIC study investigators*

Summary

Lancet Gastroenterol Hepatol 2018; 3: 548-58

Background Magnetic resonance enterography (MRE) and ultrasound are used to image Crohn's disease, but their comparative accuracy for assessing disease extent and activity is not known with certainty. Therefore, we did a

OVERALL

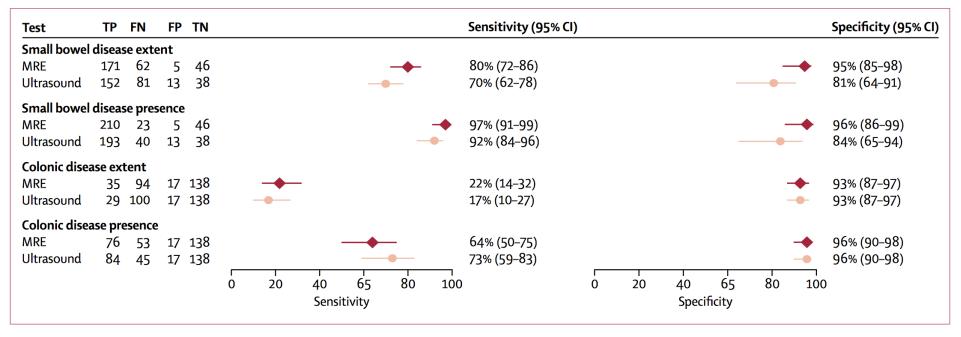


Figure 2: Sensitivity and specificity of MRE and ultrasound for the extent and presence of small bowel and colonic disease against the consensus reference standard

DETECTION — MRE slightly more sensitive and specific (not significant)

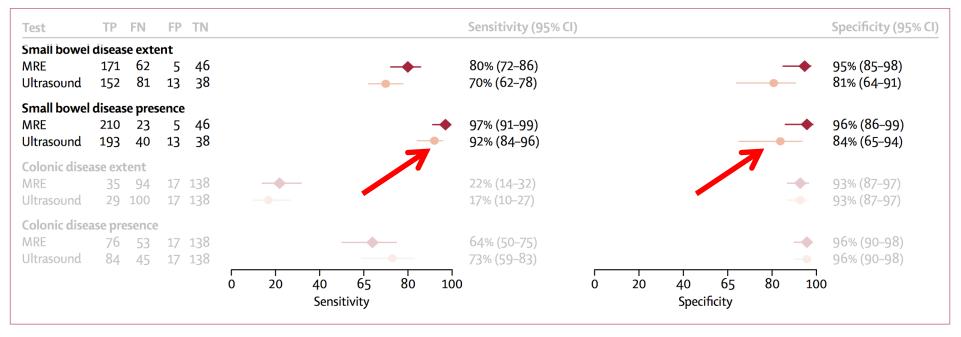


Figure 2: Sensitivity and specificity of MRE and ultrasound for the extent and presence of small bowel and colonic disease against the consensus reference standard

MAPPING — MRE is 10% more sensitive and 14% specific (both significant)

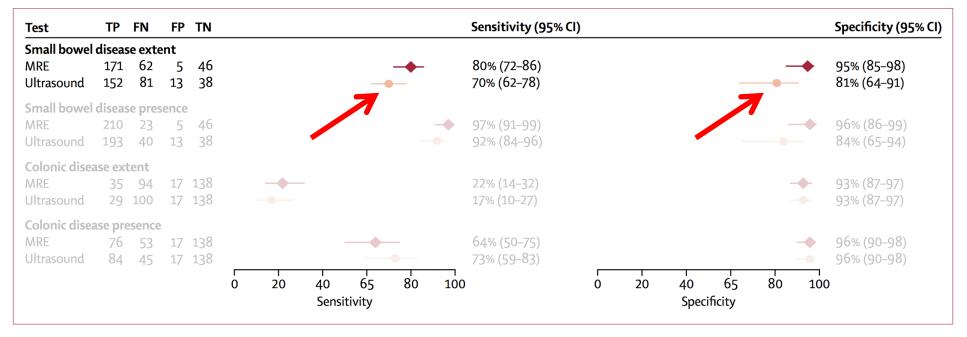
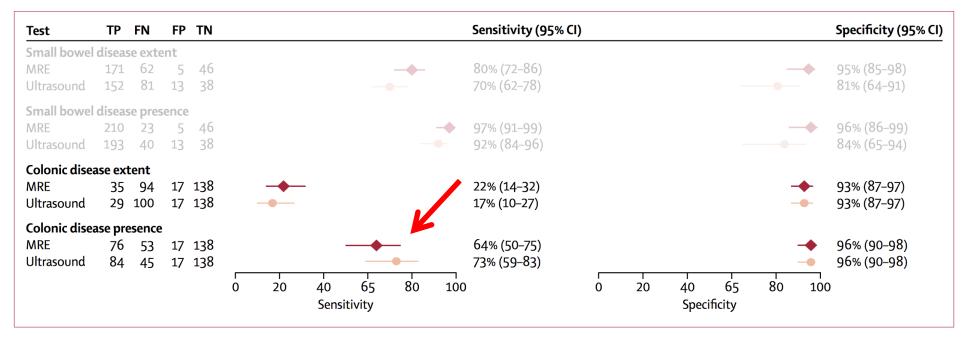
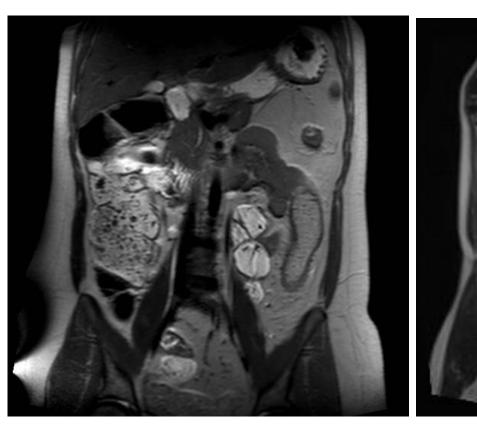
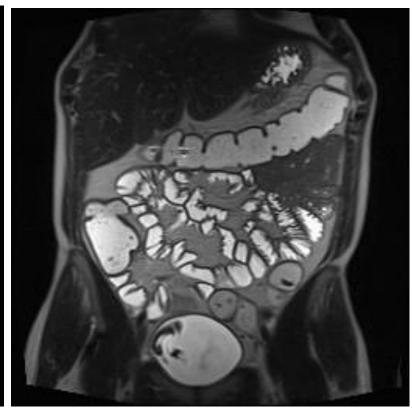
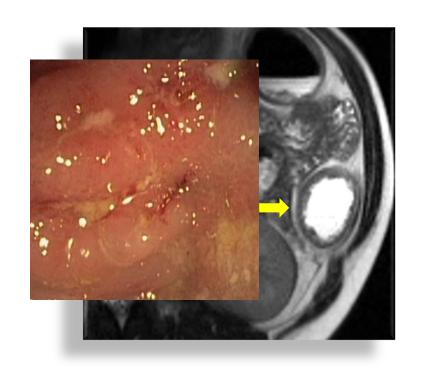


Figure 2: Sensitivity and specificity of MRE and ultrasound for the extent and presence of small bowel and colonic disease against the consensus reference standard

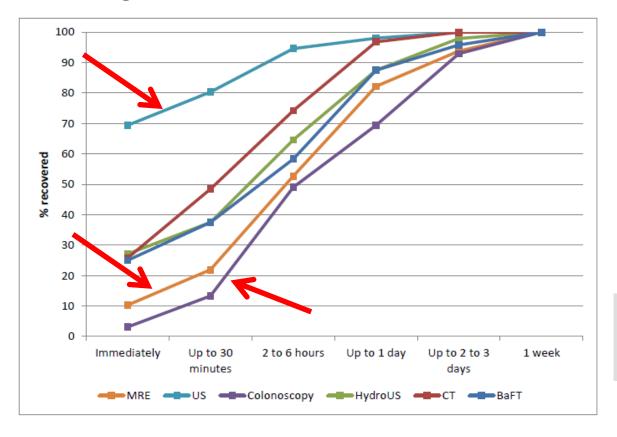
COLON – US 10% more sensitive (not significant except new diagnosis cohort)


Figure 2: Sensitivity and specificity of MRE and ultrasound for the extent and presence of small bowel and colonic disease against the consensus reference standard



Mucosal detail



Recovery time

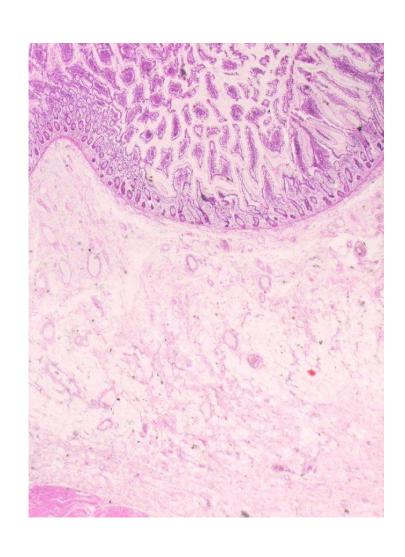
MRE recovery time
-significantly longer than
US (p<0.001)
-shorter than colonoscopy
(p<0.001),

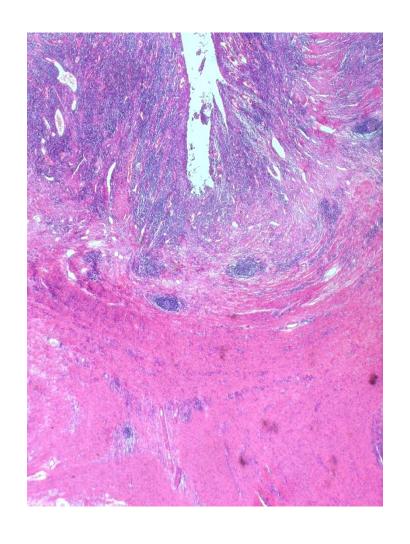
>1 day to recover MRE - 26/146 (18%)

US - 3/147 (2%)

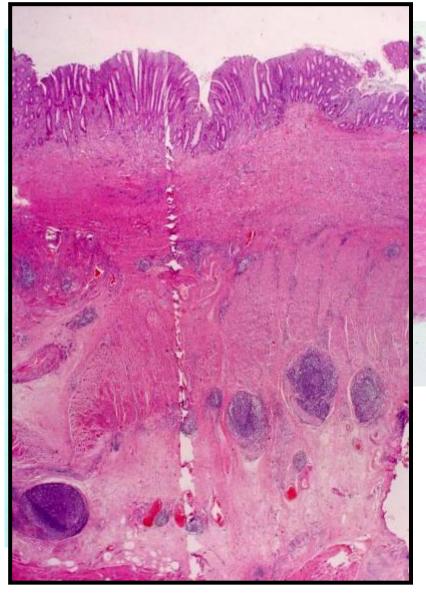
Colonoscopy - 30/98 (31%)

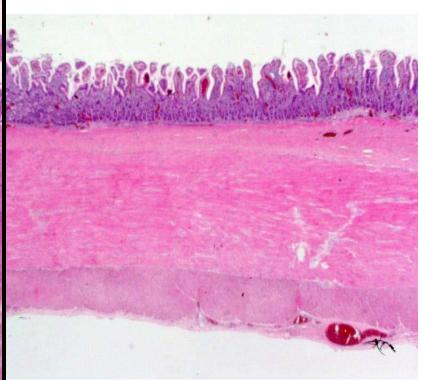
Worth warning patients!




Disease activity

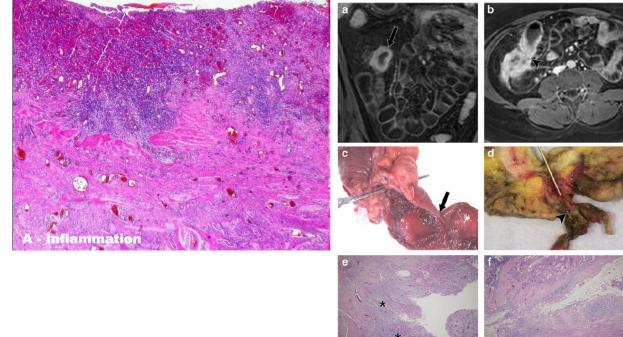
Normal

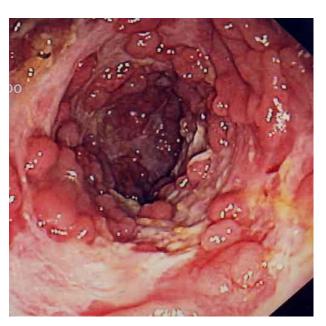

Abnormal



Fibrosis





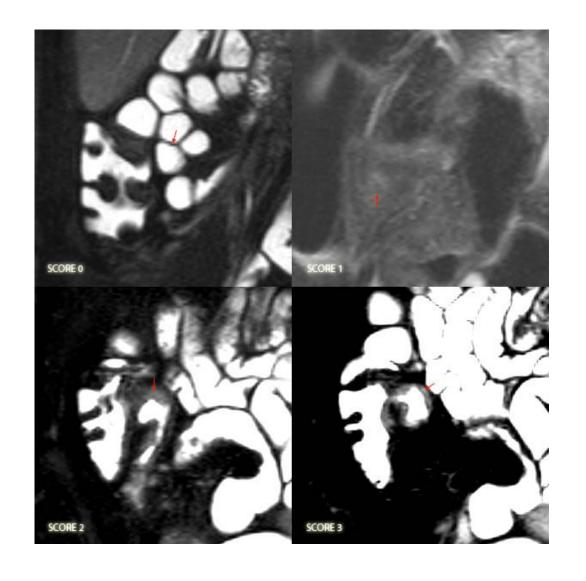


Selection site location

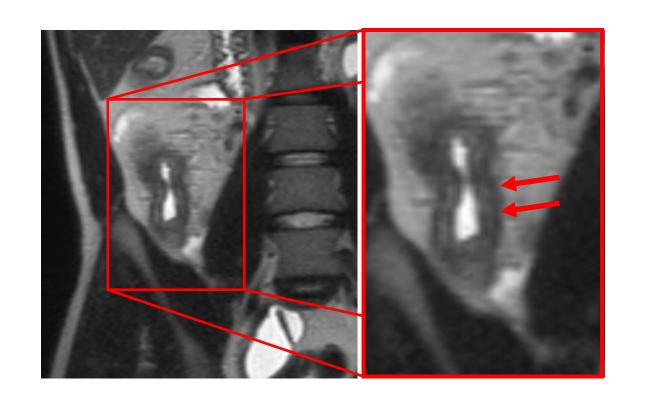
Activity assessment – imaging features

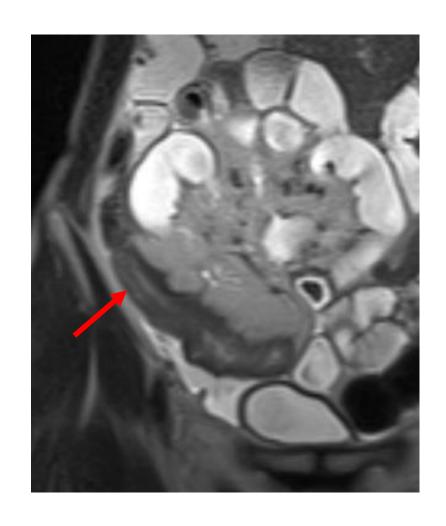
MRI Feature	Reference	Reference Standard				
Wall thickness	Zappa et al. [40]	Histologic examination of surgical specimen				
	Rimola et al. [39]	CDEIS				
	Steward et al. [53]	Surgical and endoscopic biopsy and histologic examination				
	Lasocki et al. [75]	Surgical and endoscopic biopsy and histologic examination				
	Ziech et al. [35]	Histologic examination of surgical specimen				
	Koh et al. [76]	Colonoscopy and surgical findings				
	Gourtsoyiannis et al. [77]	CDAI				
	Florie et al. [34]	CDAI and Van Hees activity index				
Mural T2 signal intensity	Maccioni et al. [38]	CDAI, CRP, ESR				
	Taylor et al. [37]	Histologic examination of surgical specimen				
	Steward et al. [53]	Surgical and endoscopic biopsy and histologic examination				
	Rimola et al. [39]	CDEIS				
	Zappa et al. [40]	Histologic examination of surgical specimen				
Perimural T2 signal intensity	Maccioni et al. [38]	CRP, ESR				
	Steward et al. [53]	Surgical and endoscopic biopsy and histologic examination				
T1 enhancement	Rimola et al. [39]	CDEIS				
	Taylor et al. [37]	Histologic examination of surgical specimen				
	Steward et al. [53]	Surgical and endoscopic biopsy and histologic examination				
	Zappa et al. [40]	Histologic examination of surgical specimen				
	Ziech et al. [36]	CDEIS				
	Florie et al. [34]	CDAI and Van Hees activity index				
Enhancement pattern	Steward et al. [53]	Surgical and endoscopic biopsy and histologic examination				
	Zappa et al. [40]	Histologic examination of surgical specimen				
	Koh et al. [76]	Colonoscopic and surgical findings				
Comb sign	Zappa et al. [40]	Histologic examination of surgical specimen				
Lymph nodes	Rimola et al. [39]	CDEIS				
	Gourtsoyiannis et al. [77]	CDAI				

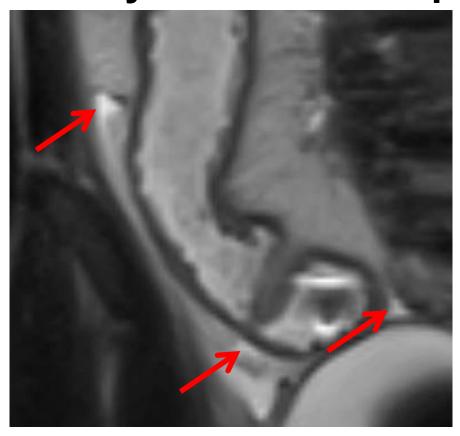
- Wall thickness
- T2 high signal (on FS)
- Perimural T2 high signal
- Contrast enhancement
- Layered enhancement
- Comb sign
- Lymph node enlargement

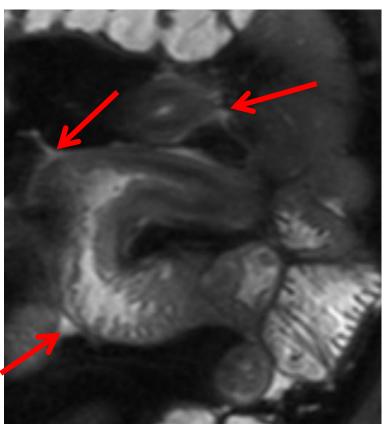


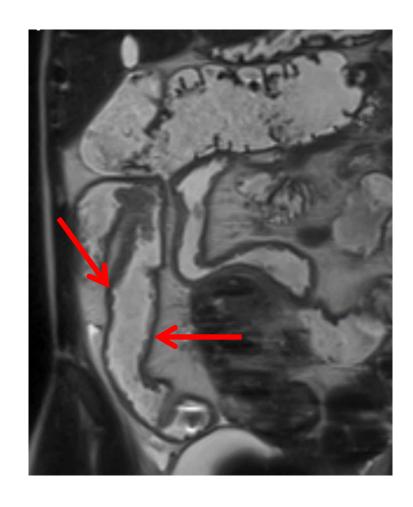
Activity assessment – T2 "grey" not black

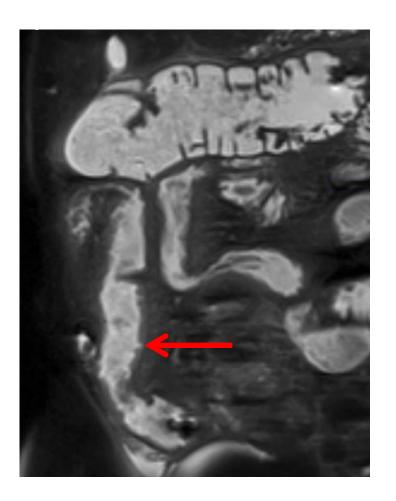









Activity assessment – perimural fluid



Activity assessment – ulceration

MRI activity scores: Radiologist grading

CDMI

Mural features	0	1	2	3
Mural thickness	<3mm	>3-5mm	>5-7mm	>7mm
Mural T2 signal (oedema)	Normal	Minor increase	Moderate increase	Large increase
Perimural T2 signal	Normal	Increased signal but no fluid	Small (≤2mm) fluid rim	Large (>2mm fluid rim)
Contrast enhancement: amount	Normal	Minor increase	Moderate increase	Large increase

London score: 1.79 +(1.34 x mural thickness) + 0.94 x mural T2 signal

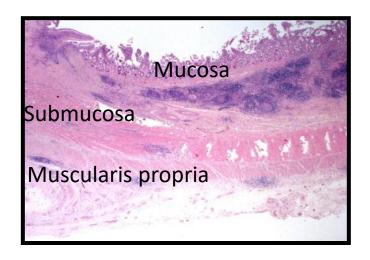
sMaRIA: 1 x mural thickness>3mm + (1 x edema) + (1 x fat stranding) +(2 x ulcers)

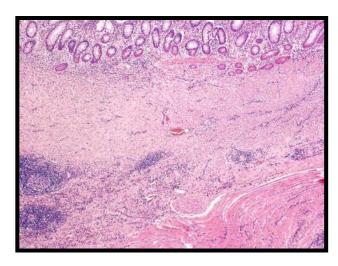
Activity assessment – key aspects

- Currently popular activity scores (sMaRIA, MEGS, London score etc) are converging on:
 - Wall thickness >3mm
 - Mural oedema ("grey not black")
 - Perimural fluid/ stranding
 - +/- Ulceration

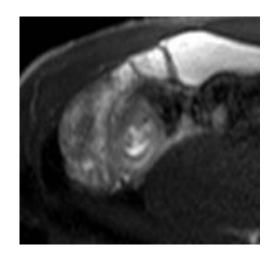
Functional sequences

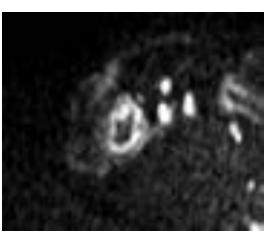
- -DWI
- -Motility

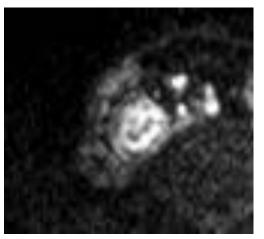


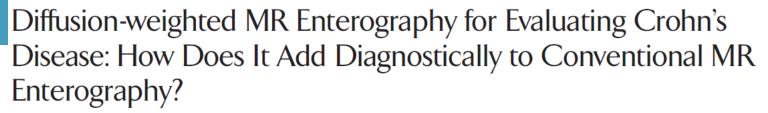

Why is DWI abnormal in IBD

- Cellular infiltrate (acute and chronic)
- Oedema
- Crypt abscess
- Increased microvessel density
- Changes in mural perfusion
- Fibrosis



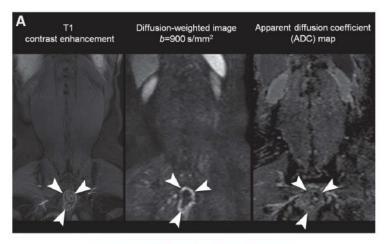

Histo correlation-activity

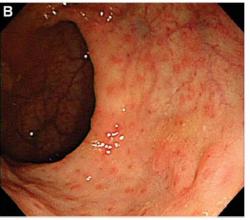




Thickened muscularis mucosae and expanded submucosa (fibrosis)

Kyung-Jo Kim, MD,* Yedaun Lee, MD,[†] Seong Ho Park, MD,[‡] Bo-Kyeong Kang, MD,[‡] Nieun Seo, MD,[‡] Suk-Kyun Yang, MD,* Byong Duk Ye, MD,* Sang Hyoung Park, MD,* So Yeon Kim, MD,[‡] Seunghee Baek, PhD,[§] and Hyun Kwon Ha, MD[‡]


Endoscopic Findings	Aphthae, Erythema, or Edema Only (n = 34)	Superficial Ulcers (n = 26)	Deep Ulcers (n = 32)	All (n = 92)
Active inflammation on conventional MRE	18 (6/34)	77 (20/26)	97 (31/32)	62 (57/92)
Active inflammation on DWI	53 (18/34)	73 (19/26)	94 (30/32)	73 (67/92)

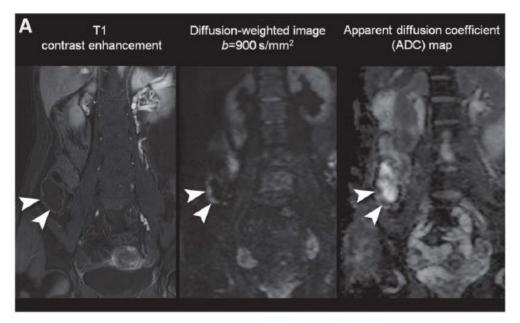

44 CD patients underwent MRI and colonoscopy
Matched MRE and colonoscopy for TI, right colon and rectum

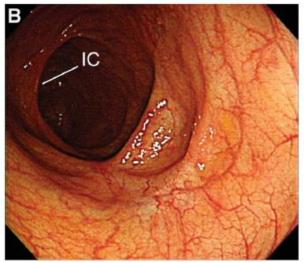
Sensitivity for colonoscopy abnormality

FN conventional MRE

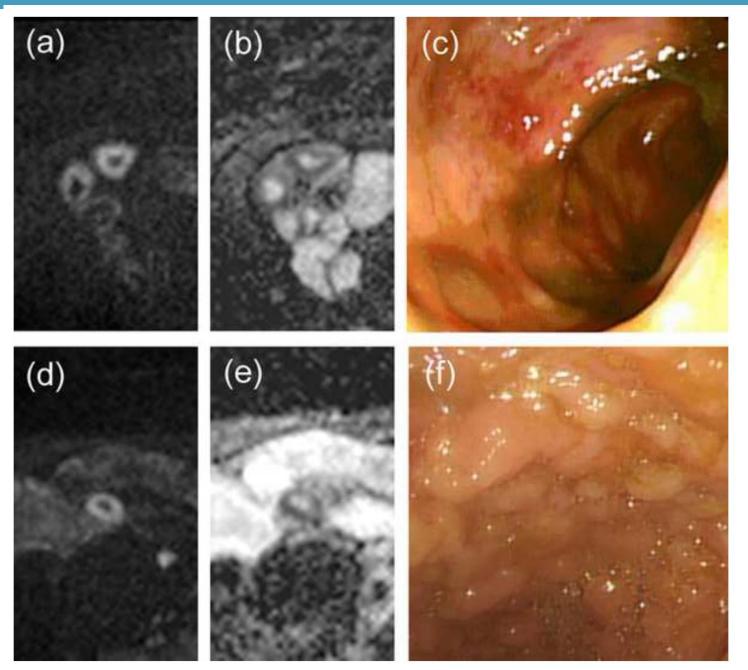
Specifcity for colonoscopy abnormality

	Sensitivity			Specificity		
	Conventional MRE	Combined Conventional MRE + DWI	P	Conventional MRE	Combined Conventional MRE + DWI	P
All types of bowel inflammation ^a	62 (57/92)	83 (76/92)	0.001	94 (33/35)	60 (21/35)	< 0.001
Subgroups according to inflammatory severity						
Deep ulcers	97 (31/32)	97 (31/32)	1	NA		
Overt (deep or superficial) ulcers	88 (51/58)	95 (55/58)	0.171	NA		
Aphthae, erythema, or edema only	18 (6/34)	62 (21/34)	< 0.001	NA		
Subgroups according to bowel location						
Terminal ileum	91 (31/34)	94 (32/34)	0.650	86 (6/7)	71 (5/7)	0.560
Colorectum	45 (26/58)	76 (44/58)	< 0.001	96 (27/28)	57 (16/28)	0.003

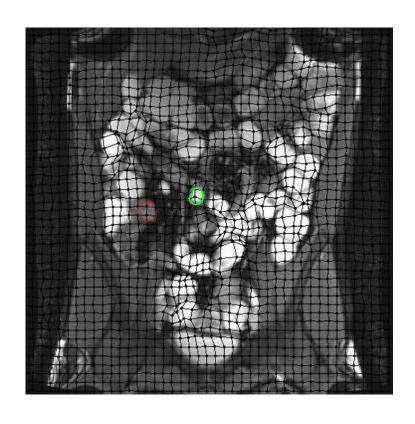

Data are percentages with the number of bowel segments provided in the parentheses.


Includes overt (deep or superficial) ulcers and less severe lesions such as aphthae, erythema, or edema.

NA, not applicable.



FP DWI


DWI

 DWI more sensitive than conventional MRI only especially for very early disease (in the colon)

At the expensive of a drop in specificity

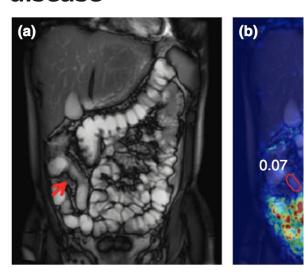
Motility

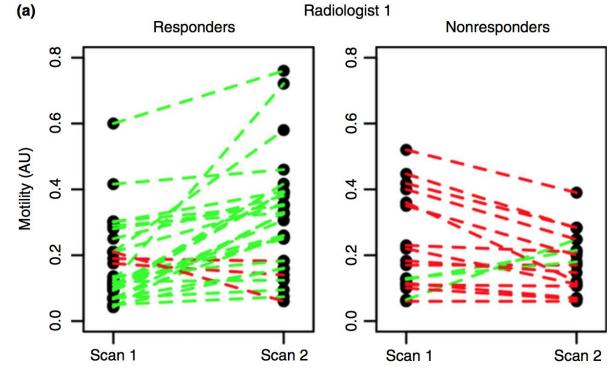
Software quantitation of cine MRI motility increasingly available

Quantified Terminal Ileal Motility during MR Enterography as a Biomarker of Crohn Disease Activity: Prospective Multi-Institution Study

```
Alex Menys, PhD • Carl Puylaert, PhD • Charlotte E. Tutein Nolthenius, MD • Andrew A. Plumb, MBBS, PhD • Jesica Makanyanga, MBBS • Jeroen Tielbeek, MD, PhD • Doug Pendse, MBBS, MD • Lodewijk A. Brosens, MD • Manuel Rodriguez-Justo, MBBS • David Atkinson, PhD • Gauraang Bhatnagar, MBBS, PhD • Frans Vos, PhD • Jaap Stoker, MD • Stuart A. Taylor, MBBS, MD
```

From the Centre for Medical Imaging, University College London, Charles Bell House, 43–45 Foley Street, 2nd Floor, London W1W 7TS, England (A.M., A.A.P., J.M., D.P., D.A., G.B., S.A.T.) and Department of Histopathology/Research Pathology, University College London Hospitals/University College London Cancer Institute,


- 82 patients MRI and IC
- Motility had higher sensitivity for CDEIS ≥4 vs MaRIA (93 vs 78%) bit lower specificity (61 vs 81%)



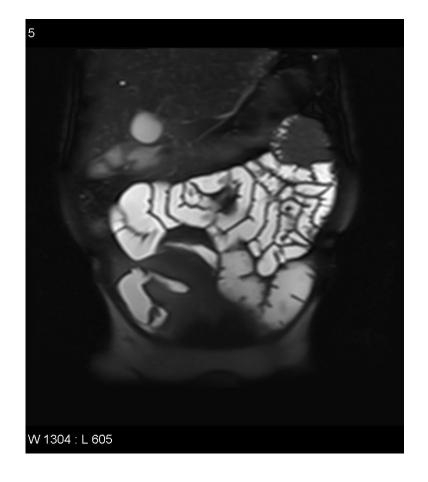
MOTILITY

AP&T Alimentary Pharmacology and Therapeutics

Magnetic resonance im a sensitive marker of redisease

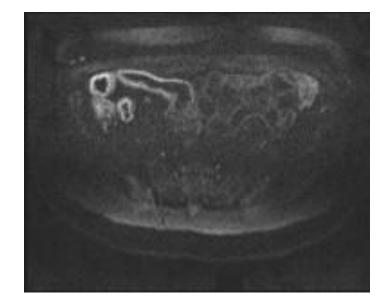
-

Treatment response

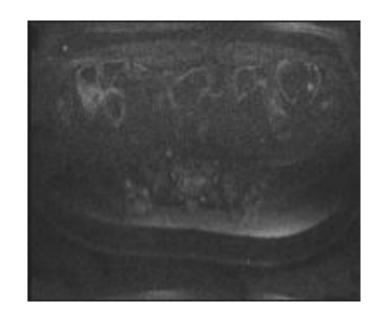


Single Shot Recovery Acquisition with Refocused Echoes (RARE)

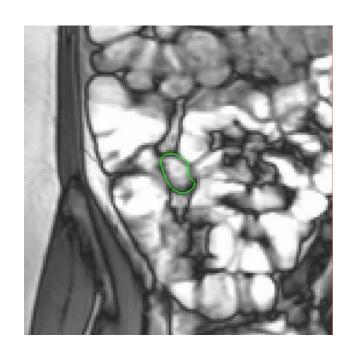
Pre-treatment



Post treatment

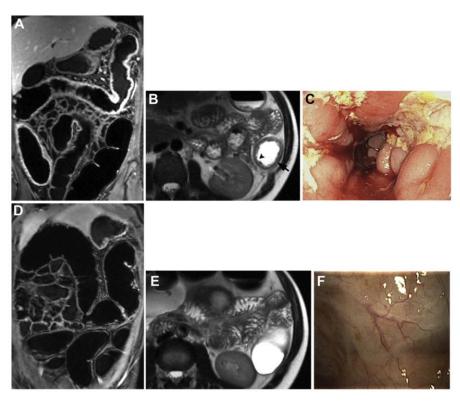


Pre-treatment

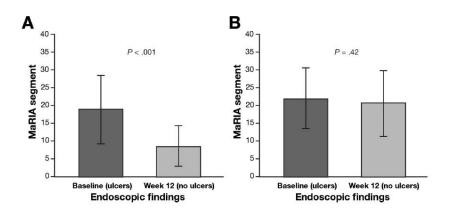


Post-treatment

Terminal ileal Motility


High motility

Low motility


Imaging Activity scores improve in response to treatment

Ordás I et al . Accuracy of magnetic resonance enterography in assessing response to therapy and mucosal healing in patients with Crohn's disease. Gastroenterology. 2014 Feb:146(2):374-82

Imaging remission

 Normalisation (or near normalisation) of MRE is ~equivalent to mucosal healing (90% overlap) Transmural healing

Conclusion

- MRE protocols are now established
- MRI has a role in disease
 - Detection
 - Activity assessment
 - Treatment follow up

Thanks

- Jordi Rimola, Barcelona
- Andrew Plumb UCL
- Harbir Sidhu UCL
- Damian Tolan Leeds